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Preface 

MultiWell Literature Citation 
Please cite the following papers to acknowledge results obtained using this version of the 

MultiWell Program Suite: 
 

For citing the basic MultiWell package 
In the following, <version> refers to the version number (e.g. 2014.1) and <year> refers to 
the year of publication (e.g. 2014) 

a) MultiWell-<version> Software, ,<year>, designed and maintained by John R. Barker with 
contributors Nicholas F. Ortiz, Jack M. Preses, Lawrence L. Lohr, Andrea Maranzana, Philip 
J. Stimac, T. Lam Nguyen, and T. J. Dhilip Kumar; University of Michigan, Ann Arbor, MI; 
http://aoss.engin.umich.edu/multiwell/. 
b) John R. Barker, Int. J. Chem. Kinetics, 33, 232-45 (2001). 
c) John R. Barker, Int. J. Chem. Kinetics, 41, 748-763 (2009). 

Additional references for adensum 
All preceding references, plus... 

d) M. Basire, P. Parneix, and F. Calvo, J. Chem. Phys. 129, 081101 (2008).  
e) F. Wang and D. P. Landau, Phys. Rev. Letters 86, 2050 (2001).  
f) Thanh Lam Nguyen and John R. Barker, J. Phys. Chem. A., 114, 3718–3730 (2010). 

Additional references for sctst 
All preceding references, plus... 

g) W. H. Miller, J. Chem. Phys. 62, 1899 (1975).  
h) W. H. Miller, Faraday Discuss. Chem. Soc. 62, 40 (1977).  
i) W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willets, Chem. Phys. Letters 172, 
62 (1990).  
j) R. Hernandez and W. H. Miller, Chem. Phys. Lett. 214 (2), 129 (1993).  
k) T. L. Nguyen, J. F. Stanton, and J. R. Barker, Chem. Phys. Letters 499, 9 (2010).  
l) T. L. Nguyen, J. F. Stanton, and J. R. Barker, J. Phys. Chem. A 115, 5118 (2011). 
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1. Getting Started 

1.1 Software Tools in the MultiWell Suite 

MultiWell 
Calculates time-dependent concentrations, yields, vibrational distributions, and rate 

constants as functions of temperature and pressure for unimolecular reaction systems that consist 
of multiple stable species, multiple reaction channels interconnecting them, and multiple 
dissociation channels from each stable species. Reactions can be reversible or irreversible. Can 
include tunneling and/or the effects of slow intramolecular vibrational energy redistribution 
(IVR).8,9 NOTE: k(E)'s can be calculated by other programs and read in (see Input file 
description below).  

DenSum  
Carries out exact counts for sums and densities of states via the Stein-Rabinovitch 

extension10 of the Beyer-Swinehart algorithm.11 Optionally, the Whitten-Rabinovitch 
approximation can be used. The following types of separable modes are accepted:  

a) vibrations (harmonic and anharmonic)  
b) free rotations (classical and quantized) 
c) hindered rotations, symmetrical and unsymmetrical (quantized eigenvalues) 
d) particle in a box 
e) translation 

Thermo 
Calculates entropy, heat capacity, and H(T)-H(0) for individual species, based on 

vibrational frequencies, moments of inertia, internal rotation barriers, and electronic state 
properties. It includes all of the types of modes listed for DenSum. It calculates equilibrium 
constants, which are useful for obtaining recombination rate constants from the corresponding 
unimolecular decomposition rate constants. When provided with parameters for reactants and the 
transition state, it uses canonical transition state theory to calculate rate constants (including 
tunneling corrections based on the 1-D unsymmetrical Eckart barrier). By using input files 
generated by Programs 'adensum' and 'sctst' (see below), Thermo can include the effects of fully 
coupled anharmonic vibrations and/or compute thermal rate constants using the fully-coupled 
anharmonic semi-classical transition state theory formulated by W. H. Miller and coworkers. 

MomInert 
Calculates principal moments of inertia for chemical species and approximate reduced 

moments of inertia for internal rotors. Requires the Cartesian coordinates for the atoms in the 
molecule, as obtained from many software packages in common use (e.g., HyperChem, 
Chem3D, MOPAC, GAUSSIAN, C-FOUR, etc.) 
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Gauss2Multi 
Reads output files from the Gaussian electronic structure program and generates data files 

for the other four programs in the MultiWell Suite. (Parameters not calculated using Gaussian 
must be added by hand.) 

lamm 
Uses Cartesian coordinates along a path (obtained from electronic structure calculations) 

to compute the effective mass for large amplitude motions, such as internal hindered rotations, 
inversion vibrations, and multi-well potentials. For this purpose, lamm is a better choice than 
MomInert. A script, gauss2lamm, is provided to read Gaussian output files and construct (in 
part) the data file needed for lamm. 

doloops, ansum, and adensum 
These three codes are available for computing sums and densities of states for non-

separable anharmonic vibrations, based on the perturbation theory expansion. Programs 
doloops and ansum are appropriate for use with small molecules, while adensum is 
appropriate for most molecules. Both doloops and adensum, like DenSum, produce output 
files that can be used directly as input files for MultiWell.  

sctst 
This code is for using the semi-classical transition state theory formulated by W. H. 

Miller and coworkers12-15 to compute cumulative reaction probabilities (analogous to the sum of 
states for the transition state). This enables computation for microcanonical rate constants 
(k(E)s), which are needed for master equation simulations (using program 'MultiWell'). The code 
also computes the partition function corresponding to the CRP at a set of temperatures from 50 K 
to 3400 K and generates a data file that can be used by program 'Thermo' to conveniently 
compute thermal rate constants using SCTST. 
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1.2 Directory Structure 
The MultiWell directory is organized as follows: 
 
/multiwell-<version> [Main MultiWell Directory] 

 /bin  [binary executables] 
 /doc  [version history, license, etc.] 
 /examples  [Example input/output files] 

  /densum-examples 
  /mominert-examples 
  /multiwell-examples 
  /thermo-examples 
  /gauss2multi-examples 
 /thermo-database [thermodynamics data in format for Thermo] 
 /scripts [admin scripts for running tests and examples]  
 /src  

  /ansum [source code for ansum]    /test [test files for densum] 
   /test [test files] 
  /adensum [source code for adensum]    /test [test files for densum] 
   /test [test files] 
  /doloops [source code for doloops]    /test [test files for densum] 
   /test [test files] 
  /gauss2multi [source code for gauss2multi]    /test [test files for densum] 
   /test [test files] 
  /densum [source code for densum]    /test [test files for densum] 
   /test [test files] 
  /mominert [source code for mominert]    /test [test files for mominert] 
   /test [test files] 
  /multiwell [source code for multiwell] 
   /test [test files] 
  /thermo [source code for thermo] 
   /test [test files] 
  /gauss2multi [source code for gauss2multi] 
   /test [test files] 
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1.3 Starting Up the Linux/Unix (and Mac OS X) Version 
In this version, binary executables must be compiled. A Makefile script located in the 

Main Directory sequentially calls makefiles in each source directory. To execute the Makefile 
and compile the binary executables, type the command “make” (omit the quotation marks and 
use all lower case characters) followed by "return". After compiling, the binary executables 
are stored in directory bin. 

To test that the compiled codes are operating correctly, run the script runtest_all by 
going to the scripts directory and typing the command “./runtest_all”. This script will 
run the newly compiled codes and allow you to compare the output files to “test” outputs stored 
in the test directories associated with the source code. The new outputs will differ from the test 
outputs with regard to date and computation time. If compiled with FORTRAN-77 compilers 
other than GNU g77, there may be minor numerical differences. If other differences appear, then 
it is possible that the compiled codes are not working properly. 

It is highly recommended that users do not place user data files, etc., in directory 
/multiwell-<version> (see Section 1.2) Instead, users should create individual directories 
for user models (see Section 1.5) and execute MultiWell from within those directories.  This 
approach makes it very easy to replace the entire directory /multiwell-<version> with a 
newer version. Programs in the MultiWell Suite are executed as described in Section 2.5. 

All of the programs in the MultiWell Suite can be executed in the manner described in 
Section 2.5. 

 

1.4 Starting Up the Windows Version 

Simple Method 
In this version, binary executables (application, or .EXE files) have already been 

compiled and are found in directory bin. To run any of the programs in the MultiWell Suite, the 
steps are as follows: 

1. Prepare a data file (for instructions, see the User Manual and the Examples directory) and 
place it in a directory devoted to your Model (see Section 1.5 of the User manual for 
recommended Model directory structure). For Densum calculations, for example, the data file 
(densum.dat) may reside in the directory Model/vibs. 

2. Make an alias of the executable of interest (e.g. densum.exe) and place the alias in the same 
directory (folder) as the data file. For Densum calculations, for example, if the data file [ 
(densum.dat) resides in the directory Model/vibs, the alias should also be place in directory 
Model/vibs. 

3. Double-click the alias. The output files (e.g. densum.out, etc.) will be written to the same 
directory. 
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Expert Users 
Expert Users can set the PATH in Windows and run all of the programs in the MultiWell 

Suite in the manner described in Section 2.5. 
 

1.5 Directory Structure for Models 
Because there are multiple input and output files associated with any reaction model, we 

have found that it is most convenient to organize them in the following way. First, keep all 
models in a directory named “models”. Then within that directory, each model should have its 
own individual directory named for the specific model. In that way, it is easy to replace the 
multiwell directory when updates are issued.  

Recommended Model directory structure: 
 
/model [name of model; e.g. "c2h6", "cloocl", etc.] 
 multiwell.dat [MultiWell data file] 
 multiwell.out [MultiWell output file] 
 multiwell.sum [MultiWell output file] 
 multiwell.rate [MultiWell output file] 
 multiwell.flux [MultiWell output file] 
 multiwell.array [MultiWell output file] 
 readme.model [read-me file for description, literature citation, etc.] 
 /DensData [REQUIRED for sums an densities of states used by MultiWell] 
 /multidata [for stored multiwell data files] 
 /vibs [densum data files (suggested file suffix: “.vibs”)] 
 /thermodata [thermo data files (suggested file suffix: “.therm”)] 
 /momidata [mominert data files (suggested file suffix: “.mom”)] 
 /results [stored output] 
 

1.6 Example Models and Files 
Several examples are provided for each of the codes: MultiWell, DenSum, MomInert, 

Thermo, Gauss2Multi, doloops, adensum, and ansum. The DenSum examples include a set of 
cases discussed in the literature: useful for testing the accuracy of Densum.  

The directory multiwell/thermo-database contains a file that has been 
formatted for use by thermo, the  code used for calculating thermodynamic properties. Data for 
several dozen molecules are included in the file. 
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2. MultiWell Master Equation Code 
Codes, examples, and this manual are available from the MultiWell Program Suite web site:  
http://aoss.engin.umich.edu/multiwell/ 
 

2.1 Brief Description 
MultiWell calculates time-dependent concentrations, yields, vibrational distributions, and 

rate constants as functions of temperature and pressure for unimolecular reaction systems which 
consist of multiple stable species, multiple reaction channels interconnecting them, and multiple 
dissociation channels from each stable species. The stochastic method is used to solve the 
resulting Master Equation. Users may supply unimolecular reaction rates, sums of states and 
densities of states, or optionally use Forst's Inverse Laplace Transform method16-18 to calculate 
k(E). For weak collisions, users can select from among many collision models, or provide user-
defined functions. 

 
The code is intended to be relatively easy to use. It is designed so that very complicated 

and very simple unimolecular reaction systems can be handled via the data file. Restructuring of 
the code and recompiling are NOT necessary to handle even the most complex systems. 

 
MultiWell is most suitable for time-dependent non-equilibrium systems. The real time 

needed for a calculation depends mostly upon the number of collisions during a simulated time 
period and on the number of stochastic trials needed to achieve the desired precision. For slow 
reaction rates and precise yields of minor reaction products, the code will require a long run time, 
but it will produce results. For long calculation runs, we often just let it run overnight. 

 
MultiWell is based on the Gillespie Exact Stochastic algorithm,19-21 as modified and 

implemented in our laboratory.1-4 It has been described in considerable detail in a recent 
publication.22 An example calculation has also been published.23 

 
In the example,23 chemical activation and shock wave simulations were carried out for a 

system consisting of six isomers and 49 energy-dependent unimolecular reactions. The isomers 
were interconnected by reversible isomerization reactions, and each isomer could also 
decompose, resulting in 14 sets of products. Many of the capabilities of MultiWell are illustrated 
in that paper.23 

2.2 Terminology 
The following sketch shows the potential energy as a function of reaction coordinate for a 

typical unimolecular system with multiple wells.  
 
- "Wells" are chemical species corresponding to local minima on the potential energy 

surface. 
 
- "Transition states" for reaction are defined in the usual way. 
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- "Product sets" are the fragmentation products corresponding to irreversible reaction via 
a given transition state.  

 
In MultiWell, each Well, each Transition State, and each Product Set is given a name and 

is designated by an index number, as described below. The names and index numbers are 
arbitrary, but they provide unique identification. 

 
Collisional activation and deactivation can take place within each well and therefore 

energy transfer parameters are designated for each. In most cases, energy transfer parameters are 
poorly known, if known at all, and thus it is usually convenient to assign the same energy 
transfer parameters to all of the wells.  

 
 

 

Product Set

Product Set Product Set

Transition
State

Transition
State Transition

StateTransition
State

Well

Well
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The energy scheme assumed by MultiWell is shown schematically by the following 
diagram: 

 

 

Figure 0. Energy schematic. The active energy E is measured from 
the zero point energy of the reactant well. The critical energy E0 is 
the zero point energy difference between the transition state and 
the reactant well. 

 
 

2.3 Default Array Dimensions 
Array dimensions can be changed by revising the include files: Declare1.inc, 

Declare2.inc, and Declare3.inc. Currently, the array dimensions are set for use with up 
to the following defaults. (See the section above on "Terminology".) 

 
Up to 50 Wells. 
 
Up to 25 Reaction channels per well for a total of up to 100 Reactions. 
 
Up to 50 Product Sets. 
 
Double Arrays with user-selected sizes up to 14000 elements (reduced from 20000 in an 
earlier version).  
 
100 time steps. 
 
200 energy bins x 10 time steps for reporting vibrational distributions. 
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2.4 Notes on FORTRAN source code and compilation 
 

• There are many explanatory comments embedded in the source code. 
 

• The source code is written for the GNU FORTRAN compiler for LINUX; a makefile is 
distributed with the code. The code can also be compiled with almost any other 
FORTRAN compiler. 
 

• A few sections of the source code are platform-dependent (e.g., OPEN statements, date & 
time calls, and file & path names). These can be found in the following source code 
segments:  

MultiWell.f [main program]  
DateTime.f  
DensArray.f  
Estart.f  
RateArray.f 

 
• The following compiler options are required, or recommended:  

- static storage (REQUIRED).  
- case-sensitive (RECOMMENDED).  
- variables and constants initialized to zero (RECOMMENDED).  
- double precision transcendentals (RECOMMENDED).  
- promote REAL and COMPLEX to double precision (RECOMMENDED).  
- basic optimizations (RECOMMENDED). 
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2.5 MultiWell Input Files and Program Execution 
The default input data filename is multiwell.dat (all lower case). Starting with version 

2008.1, it is possible to change the input data file name and run multiple sessions in the same 
directory at the same time, each with a user-selected FileName. 

 
To run MultiWell using the default filename (multiwell.dat): 

 
LINUX/UNIX: in the directory where the input data file and the auxiliary directory 

DensData reside, type: 
 
<PATH>/multiwell-<version>/bin/multiwell <RETURN> 
 

where <PATH> designates the PATH to /multiwell-<version>. If directory 
/multiwell-<version> resides in the user home directory, type: 

 
~/multiwell-<version>/bin/multiwell <RETURN> 
 
WINDOWS in a DOS window: in the directory where the input data file and the auxiliary 

directory DensData reside, type: 
 
<PATH>/multiwell-<version>/bin/multiwell <RETURN> 
 
 
For example: 
 
~/multiwell-2013/bin/multiwell 
 

 
To run MultiWell using a user-defined filename (FileName.dat): 

 
Follow the same procedures described above, but type: 
 
<PATH>/multiwell-<version>/bin/multiwell <FileName> <RETURN> 
 

For example: 
 
~/multiwell-2013/bin/multiwell final.dat 
 
All of the resulting output files will take names with the same prefix: 

final.out 
final.sum 
final.rate 
final.dist 
final.flux 
final.array 
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2.6 MultiWell Output Files 
Output files with an identical FileName (including the default: 'multiwell') are erased 

and written-over for every calculation (for optionally naming of files at run time, see Section 
2.5). To be saved, they must be re-named. Use a word processor/editor capable of wide-open (no 
truncation of lines) output, because the output can be hundreds of characters in width, depending 
on the number of species and products. In Linux, Xemacs, Emacs, Nedit and other editors are 
available for this purpose. For Macintosh OS X, "Tex-Edit Plus" (share-ware available at 
http://www.nearside.com/trans-tex/) and "TextWrangler" (free-ware available at 
http://www.barebones.com/) are very convenient word processors for text files, although full-
featured word processors can be used as well. 

FileName.out  
Time-dependent output of concentrations and average energies. Also includes summaries 

of input parameters. The time-dependent quantities are the instantaneous values at the time 
indicated: they are not averaged over the time interval. Hence, the averages are only over the 
number of trials. 

FileName.sum  
Summary output file intended for convenient calculations of fall-off curves and other 

pressure-dependent quantities. This file gives all of the header material in the full output file, but 
instead of the time-dependent results, only the final results of each simulation are given in the 
form of a summary table. 

FileName.rate  
Time-dependent output of average unimolecular reaction "rate constants" or "reaction 

flux coefficients" (which vary with time in non-steady-state systems). Many trials are needed to 
accumulate good statistics. To improve statistics, the binned results correspond to the number of 
visits to the bin (which can be many times larger than the number of trials) and are averaged over 
the time-bin. 

FileName.dist  
Time-dependent vibrational distributions in Wells (not initial or final products). Only the 

non-zero array elements are listed. Many trials are needed to accumulate good statistics. Note 
that the distributions are normalized according to the number of stochastic trials. Therefore, the 
sum of the array elements for a chemical species (Well) at a given time is equal to the fractional 
population of that species at that time. Thus the distributions report not only the relative 
populations as functions of energy and time, but also the growth and decay of species 
concentrations. 

FileName.array  
Tabulations of all energy-dependent input data. Includes tables of densities of states, 

specific rate constants, collision probabilities and normalization factors, and initial energy 
distributions. 
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FileName.flux  
Tabulates the reactive flux via each of the unimolecular channels. The reactive flux is 

useful for identifying quasi-equilibrium situations and for tracing chemical pathways. 
 
 
 

2.7 MultiWell Input Data File (FileName.dat) 
(See Section 2.5 for optional naming of data files at run time.) 
 
The datafile uses free input format. 
 
NOTES ON FREE INPUT FORMAT: Fields separated by delimiters. 
- Standard delimiters on most platforms: commas and spaces. 
- Additional delimiters acceptable on some platforms: tabs. 
- CHARACTER constants enclosed in apostrophes (') are accepted on most platforms. Some 

platforms will accept CHARACTER constants without their being enclosed in 
apostrophes, but then they cannot contain any of the delimiter characters. 
 

MULTIWELL MAJOR INPUT OPTIONS 
1. Densities of states are read from an external file created by DenSum, or other code. 
2. Specific Rate constants: k(E)  

a) RRKM theory via sums of states read from an external file (created by DenSum, or other 
code). 

b) k(E) values read from external file. 
c) Reversible and/or irreversible reactions. 

3. Initial energy distributions:  
a) thermal (with an optional energy offset), calculated internally. 
b) chemical activation, calculated internally. 
c) delta function 
d) distribution can be read from an external file.  

4. Separate initial vibrational temperature and translational temperature. 
5. Can incorporate the effects of slow intramolecular vibrational energy redistribution (IVR). 
6. Can include tunneling via an unsymmetrical Eckart barrier. 
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MULTIWELL INPUT DATA FILE FORMAT 
Note: Starting with version 2.0, the data file format is no longer compatible 
with previous versions. 

SECTION A: PHYSICAL PARAMETERS  
 

Line 1 
 
TITLE (up to 100 characters) 
 
Line 2  
 
Egrain1, imax1, Isize , Emax2, IDUM  

 

Egrain1 energy grain size of first segment in "double arrays", see Note (units: cm-1)  
imax1 size of first segment of double array; selected so that sums or densities of states is 

a smooth function of energy (less than ~1% relative fluctuations). Note that 
imax1 must be less than Isize. 

Isize  user-selected size of double array. The Default array size starting in version 2.08 
is set for a maximum of 14000 elements in the INCLUDE file "declare1.inc". 
(The array size is defined by Imax=14000 in declare1.inc.) This large maximum 
array size allows users to select any value of Isize ≤ 14000 elements without 
having to recompile the code. If array sizes greater than 14000 elements are 
needed, the Imax can be changed in the Linux/Unix version by deleting old object 
files (by typing ‘make clean’ in /multiwell/src/multiwell) and then recompiling 
(by typing ‘make’). 

Emax2 maximum energy of 2nd segment of double arrays (units: cm-1)  
IDUM random number seed (integer); EXAMPLE: "2113989025"  

 
***** NOTE: "Double arrays" have two sections: segment 1 consists of imax1 equally 
spaced (Egrain1) data ranging from E=0; segment 2 consists of equally spaced values from 
E=0 to Emax2; the size of the second segment is (Isize - imax1); the energy grain of the 
second segment is Emax2/(Isize - imax1 - 1). 

 
(Section A, continued...)
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Line 3 
 
Punits, Eunits, Rotatunits 
[It is required that the three keywords be entered in this exact order!] 

 
Punits one of the following pressure units keywords:  
 'BAR', 'ATM', or 'MCC'[for molecules/cc] (Note that 'TOR' is no longer 

accepted.) 
Eunits one of the following energy units keywords:  
 'CM-1', 'KCAL', or 'KJOU' for cm-1, kcal/mole or kJ/mole 
Rotatunits one of the following keywords for rotational information: 
 'AMUA', 'GMCM', 'CM-1', 'MHZ', 'GHZ'(for moments of inertia in units of 

amu.Å2 or g.cm2, and rotational constants in units of cm-1. MHz, or GHz) 
 (some combinations of upper/lower case are also accepted) 
 
Line 4  
 
Temp , Tvib  

 
Temp translational temperature (units: Kelvin)  
Tvib initial vibrational temperature (units: Kelvin)  

 
For shock-tube simulations, Temp is set equal to the shock (translational) 
temperature and Tvib is set equal to the vibrational temperature prior to the 
shock (usually room temperature). 

 
Line 5  
 
Np       number of pressures 
 
Line 6 
 
PP(1), PP(2), ..., PP(Np) 
 
List of Np pressures 
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SECTION B: PARAMETERS FOR WELLS AND FOR PRODUCT SETS  
 

Line 7 
 
NWells , NProds 

 
NWells number of "wells" (includes irreversible product sets)  
NProds number of entrance/exit channels; each channel has a product set associated with 

it. 
 

Line 8 
 
IMol , MolName , HMol , MolMom , Molsym , Molele , Molopt 
 
(REPEAT NWells times: once for each well.) 

 
IMol index number for well (1 ... NWells)  
MolName name of well (≤10 characters)  
HMol enthalpy of formation at 0 K (units defined by keyword)  
MolMom rotational parameter for 2-dimensional external rotation (moment of inertia or 

rotational constant; units defined by keyword on Line 3) 
Molsym external symmetry number for well (see Section 9.5 for a discussion)  
Molele electronic partition function for well (REAL number); depends on temperature; 

can be obtained from THERMO output. 
Molopt number of chiral stereoisomers (or "optical isomers") for well (see Section 9.5 for 

a discussion) 

See Section 9.4 for a discussion of proper input for External Molecular Rotations. 
 
Line 9 
 
IMol , MolName , Hmol 
 
(REPEAT NProds times: once for each entrance/exit channel, i.e. for each product set.)  

 
IMol index for channel (NWells+1...NWells+NProds)  
MolName name of Product set (max 10 characters)  
Hmol enthalpy of formation at 0 K (units defined by keyword on Line 3) [ignored unless 

tunneling is used] 
 
***** NOTE: the numbering of entrance/exit channels starts with NWells+1. 
 

Line 10 
 
SigM, EpsM, AmuM, Amu  
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SigM Lennard-Jones σ (Å) for collider  
EpsM Lennard-Jones ε/kB (Kelvins) for collider  
AmuM Molecular weight (g/mole) of collider  
Amu Molecular weight (g/mole) of reactant 
 
Optional Line 10a 
 
OLDET To change the default treatment of collisional energy transfer from Barker's "New 

Approach" (see Ref. 5) to the traditional approach, insert the keyword OLDET (all 
upper case) on a new line. The "New Approach" (the default) attenuates the 
inelastic collision frequency (and hence the rate of inelastic energy transfer) at 
low energies, where the densities of states are very sparse. The traditional method 
was based on the convenient assumption that the inelastic collision frequency is 
independent of internal energy. This feature facilitates intercomparisons between 
multiwell and other master equation codes. 

 
Line 11 
 
Mol, Sig, Eps, ITYPE, DC(1), DC(2), ... , DC(8) 
 
(REPEAT Lines 11 and 12 NWells times: once for each well.)  

 
Mol index number of Well  
Sig Lennard-Jones   σ (Å) for this well  
Eps Lennard-Jones  ε/kB (Kelvins) for this well  
ITYPE selects model type in Subroutine PDOWN (see below for description of collision 

models). Model types and explanations are given below. 
DC(8) eight (8) coefficients for energy transfer model  
 

 
Line 12 
 
LJQM keyword for type of collision rate constant:  

 'LJ' for Lennard-Jones collision  rate constant. This rate constant is computed 
using the empirical expression of Neufeld et al. for the collision integral.24 

 'QM' for quantum mechanical total collision rate constant25 
 

(REPEAT Lines 11 and 12 NWells times: once for each well.)  
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SECTION C: PARAMETERS FOR TRANSITION STATES AND REACTIONS  
 

Line 13 
 

NForward number of forward unimolecular (not recombination) reactions to be input. 
 
Line 14 
 
Mol, ito, TS, RR, j, k, l, AA, EE, KEYWORD, KEYWORD, KEYWORD, KEYWORD, KEYWORD 

 
(REPEAT NForward times: once for each forward reaction.) 
 

Mol index of reactant well  
ito index of entrance/exit channel or well  
TS Name of transition state (up to 10 characters)  
RR 2-D external rotational parameter (moment of inertia or rotational constant; units 

defined by keyword on Line 3) ; See Section 9.4 for a discussion of proper 
input for External Molecular Rotations. 

j external symmetry number for TS (see Section 9.5 for a discussion)  
Qel electronic partition function for TS (REAL number) 
l number of optical isomers for TS  (see Section 9.5 for a discussion) 
AA A-factor for reaction (units: s-1); only used for ILT method, but ALWAYS read in 
EE reaction critical energy (E0), relative to ZPE of reactant (Mol) (See Section 9.9 

for the appropriate E0 when using SCTST)  
KEYWORDS ALWAYS SPECIFY FIVE KEYWORDS, IN ANY ORDER. Select one from 

each of the Five Groups below. See Section 2.10 (FATAL INPUT ERRORS) 
for a list of incompatible choices. 

Group 1 
'NOREV' for neglecting the reverse reaction  
'REV'  for calculating reverse reaction rate (automatically treated as NOREV for 

dissociation reactions). 
 
Group 2 
'FAST'  for neglecting limitations due to IVR 
'SLOW'  for including IVR limitations; line 14b contains parameters (see below).  
 
Group 3  
'NOTUN' for neglecting tunneling 
'TUN' for including tunneling via unsymmetrical Eckart barrier; line 14a contains 

parameters (see below). This option should not be selected if SCTST was 
used to generate the cumulative reaction probability (~sum of states). 

 
Group 4 
'NOCENT' for no centrifugal correction 
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'CENT1' for quasi-diatomic centrifugal correction with 1 adiabatic external rotation 
(for special cases) 

'CENT2' (This is the usual choice) for quasi-diatomic centrifugal correction with 2 
adiabatic external rotations 

'CENTX' for legacy centrifugal correction with 2 adiabatic external rotations (not 
recommended) 

 [Note: the calculated k∞ is numerically the same for all options in Group 4.] 
 
Group 5 
'ILT' Inverse Laplace transform method for k(E). 
'SUM'   External file containing sums of states (i.e. generated by densum, or 

adensum) 
'CRP'  External file containing cumulative reaction probability (i.e. generated by 

sctst) 
'RKE' External file containing k(E):  <TS filename>'.rke' (e.g. 'TS-1.rke'). 

NOTE: k(E)'s can be calculated by other programs and read in as an external 
file. 

 
Line 14: Supplementary Lines 

The following supplementary lines provide additional information corresponding to some of the 
Keywords in Line 14. The supplementary line immediately follows the line invoking the 
Keyword. (On the rare occasion when more than one supplementary line is required, they must 
be entered in the order given here.) 

Supplementary Line 14a 
 
'TUN', vimag(Mol,i) 
 
This line appears only if KEYWORD 'TUN' was used in Line 14. It gives the imaginary 
frequency (cm-1) for the specified reaction. It can only be used when 'NOCENT' is invoked. 
Cannot be used simultaneously with 'ILT' or 'RKE'. 
 
Supplementary Line 14b 
 
'SLOW', vivr(Mol,i), vave(Mol,i), kcivr(Mol,i), tivr(Mol,i), civr(Mol,i,1), 
civr(Mol,i,2), civr(Mol,i,3)  

 
This line appears only if KEYWORD 'SLOW' was used in Line 14. It gives parameters for the 
IVR transmission coefficient for this reaction: 

Transmission Coefficient = kIVR E( ) + kIVRc M[ ]
kIVR E( ) + kIVRc M[ ]+ν ivr

 

 
where νIVR is the characteristic reaction frequency (as in RRK unimolecular reaction rate theory). 
At energies above the IVR threshold energy (i.e. E ≥ EIVR

0), the IVR rate constant kIVR(E) is:  
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kIVR E − E0r( ) = civr Mol,i,1( ) + civr Mol,i,2( )× E − E0r( ) + civr Mol,i, 3( )× E − E0r( )2  
 

where E (expressed in cm-1) is the energy relative to the reactant zero point energy and E0r is the 
reaction critical energy (which may include the centrifugal correction).  

 
vivr(Mol,i) Characteristic frequency (cm-1) for the reaction; νIVR/s-1 = vivr*2.9979×1010. 
vave(Mol,i) Average frequency (cm-1) of the reactant; used to define an upper limit to kIVR, 

the IVR rate constant: kIVR ≤ 2*vave*2.9979×1010.  
kcivr Bimolecular rate constant kc

IVR [cm3 molecule-1 sec-1] for collision-induced 
IVR. In the absence of other information, kc

IVR may be estimated as 
approximately equal to the quantum mechanical total collision frequency 
bimolecular rate constant, as obtained from the MultiWell output (see Line 
#12, above).  

tivr(Mol,i) IVR threshold energy (cm-1), measured from the reaction critical energy (i.e. 
E0

IVR-E0r). 
civr(Mol,i,..) Three (3) coefficients for second order polynomial fit of kivr (s-1) as a function 

of E-E0r (cm-1; energy measured from the reaction critical energy). 
 
 
 

SECTION D: CALCULATION SPECIFICATIONS  
 

Line 15 
 
Ntrials, Tspec, Tread, KEYTEMP, Molinit, IR, Einit  

 
Ntrials number of trials  
Tspec a KEYWORD that specifies meaning of Tread (CHARACTER*4) 
 'TIME' indicates Tread = max time simulated (Tlim)  
 'COLL' indicates Tread = max time simulated is calculated from the specified 

maximum number of collisions experienced by initial well number (Molinit).  
Tread maximum simulated time or maximum number of collisions (see Tspec, above).  
KEYTEMP a KEYWORD that specifies the type of initial energy distribution  
 'DELTA': Monoenergetic at energy Einit  
 'THERMAL': Thermal (Tvib) with energy offset Einit  
 'CHEMACT': Chemical activation (Tvib) from "product" #IR  
 'EXTERNAL': Read cumulative energy distribution from external file 

"multiwell.pstart" placed in directory "DensData"  
Molinit index of initial well  
IR index number of the "product set" which reacts to produce Molinit via 

chemical activation; neglected if 'CHEMACT'is not specified. 
Einit initial energy (relative to ZPE of Molinit); neglected if 'CHEMACT' is 

specified; same units as Eunits. 
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Line 16 
 
BLANK LINE TO INSURE THAT THE LAST LINE IS FOLLOWED BY A CARRIAGE 
RETURN (needed for all READ statements). THE CARRIAGE RETURN IS EASILY 
OVERLOOKED! 
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2.8 Collision Models 
(see Line 11 in multiwell data file described above) 
 

This selection of collision models includes most of the empirical models discussed in the 
literature. Function subroutine "Pdown.f" can be revised to include additional models. 
 
For general guidance in selecting models and parameters, see Barker et al.26 
 
For the EXPONENTIAL MODEL, use ITYPE=1 with coefficient C(4) set equal to zero so that 
the second exponential term is equal to zero; Model Types 12 or 13 can also be used. 

 
ITYPE  

1   Biexponential Model  
2   Density-weighted Biexponential Model  
3   Off-set Gaussian with constant offset and E-dependent width  
4   Biexponential Model with energy-dependent fraction  
5   Generalized Gaussian with energy-dependent exponent  
6   Generalized Gaussian plus Exponential term  
7   Weibull Model  
8   Lorentzian Step-Ladder Model  
9   Exponential+Elastic Model 
10   Klaus Luther's empirical function 
11   Radiationless transition empirical function 
12   Exponential Model with alpha(E)=linear + exponential 
13   Exponential Model with alpha(E) switching function 
14 Boltzmann-weighted exponential 

 
FUNCTION AND COEFFICIENT DESCRIPTIONS: 
 
ITYPE = 1 for Biexponential Model  
 
Pdown = (1-C(4))*EXP(-(E-EE)/Alpha1) + C(4)*EXP(-(E-EE)/Alpha2)  
 
Alpha1 = [C(1) + E*C(2) + E*E*C(3)]*(T/300)**C(8)  
Alpha2 = [C(5) + E*C(6) + E*E*C(7)]*(T/300)**C(8) 
 
ITYPE = 2 for Density-of-States-weighted Biexponential Model  
 
Pdown = ρ(E)*((1-C(4))*EXP(-(E-EE)/Alpha1) + C(4)*EXP(-(E-EE)/Alpha2))  
 
Alpha1 = [C(1) + E*C(2) + E*E*C(3)]*(T/300)**C(8)  
Alpha2 = [C(5) + E*C(6) + E*E*C(7)]*(T/300)**C(8) 
 
 
ITYPE = 3 for Off-set Gaussian with constant offset and E-dependent width  
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Pdown = EXP(-(0.5*(E-EE-C(4))/Alpha1)**2)  
 
C(4) = constant off-set, Alpha1 is the std. dev.  
Alpha1 = [C(1) + E*C(2) + E*E*C(3)]*(T/300)**C(8) 
 
ITYPE = 5 for Generalized Gaussian with energy-dependent exponent  
 
Pdown = EXP(-[(E-EE)/Alpha]**Exponent)  
 
Alpha = C(1) + [E*C(2) + E*E*C(3)]  
exponent = C(5) + [E*C(6) + E*E*C(7)] 
 
ITYPE = 6 for Generalized Gaussian plus Exponential term  
 
Pdown =(1-C(6))*EXP(-[(E-EE)/Alpha1]**Exponent) + C(6)*EXP(-(E-EE)/Alpha2)  
 
Alpha1 = C(1) + [E*C(2) + E*E*C(3)]  
Alpha2 = C(7) + E*C(8)  
Exponent = C(4) + E*C(5)  
 
ITYPE = 7 for Exponential Model with Switching function  
 
Pdown = EXP(-(E-EE)/Alp)  
 
Alpha1 = C(1) + E*C(2)  
Alpha2 = C(3) + E*C(4)  
Alp = Alpha1 + 0.5*(Alpha2 - Alpha1)*(1. - TANH((C(5) - E)/C(6) ) ) 
 
ITYPE = 8 for Lorentzian Step-Ladder Model  
 
Pdown = 1 / [(E-EE-Alpha)^2 + Width^2]  
 
Alpha = C(1) + [E*C(2) + E*E*C(3)]  
Width = C(5) + [E*C(6) + E*E*C(7)] 
 
ITYPE = 9 for Exponential+Elastic Model  
 
Pdown = [F/(F+C(4))]*EXP(-(E-EE)/Alpha) + elastic  
 
Alpha = [C(1) + E*C(2) + E*E*C(3)]*(T/300)**C(8)  
F = [C(5) + (E/C(6))**C(7)]*(T/300)**C(8); when E=EE 
 
ITYPE = 10 for Klaus Luther's empirical function  
 
Pdown = EXP [-[(E-EE)/Alpha]^Beta]  
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Alpha = C(1) + E*C(2)  
Beta = C(3) 
 
ITYPE = 11 for radiationless transition empirical Function  
 
Pdown = EXP [-(E-EE)/Alpha]' 
 
Alpha = C(1)*[1-exp[-(E/C(2))^C(3)] + C(4)]  
 
ITYPE = 12 for Exponential Model with alpha(E)= Linear+exponential  
 
Pdown = EXP(-(E-EE)/Alpha1)  
 
Alpha1 = C(1) + E*C(2) + C(3)*exp(-E/C(4)) 
 
ITYPE = 13 for Exponential Model with Alpha(E) Switching function  
 
Pdown = EXP(-(E-EE)/Alp)  
 
Alp = Alpha1 + 0.5*(Alpha2 - Alpha1)*(1. - TANH((C(5) - E)/C(6) ) ) 
Alpha1 = C(1) + E*C(2)  
Alpha2 = C(3) + E*C(4)  

 
ITYPE = 14 for Boltzmann-Weighted Exponential  
(motivated by recent trajectory calculations27) 
 

Pdown = B(T;EE,E)*EXP( -(E-EE)/Alp ) 
 
B(T;EE,E) = SQRT(rho(EE)*exp(-(EE-E)/RT)) 
   where rho(EE) = density of states  
Alp = C(1) 
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2.9 Format of External Data Files  
Location: EXTERNAL DATA FILES MUST BE STORED IN FOLDER 

(DIRECTORY) "DensData", which is in the folder (directory) from which the MultiWell 
application is executed. 

Densities, Sums and k(E)'s 
Creation: Typically, the external files for densities of states and sums of states are 

generated using the program DenSum, which calculates sums and densities via exact counts. A 
similar format is used for specific rate constants, as described here. 

 
FILE NAMES 

 
For sums and densities of states: CHARACTER*10 + '.dens' 

Example: 'Ethyl-Cl .dens'  
 
For specific rate constants [k(E)'s]: CHARACTER*10 + '.rke'  

Example: 'HCl+C2H4.rke' 
 

FILE FORMAT 

Note: Starting with version 2008.1, " ____.dens" files, which contain sums and densities 
of states, may have a block of comment lines preceding Line 1 (below). The first and last 
comment lines in the block must have exactly the following 46 characters: 

**************INPUT DATA SUMMARY************** 
 

Line 1 
 
Name of species or transition state [CHARACTER*10]: up to 10 characters (skipped when read 
by MultiWell, and therefore can be left blank) 
 
Line 2 
 
Title/Comment line [CHARACTER*100]: up to 100 characters (skipped when read by 
MultiWell, and therefore can be left blank) 
 
Line 3 
 
Egrain1 ,  imax1 ,  Emax2 ,  Isize , Viblo  
[REAL, INTEGER, REAL, INTEGER, REAL]  
 
Note that this ordering of parameters is not the same as in multiwell.dat. If Egrain1, imax1, 
& Emax2 do not match those for the MultiWell run (see line #2 of the MultiWell data file), then 
execution terminates with a message. In density and sums of states files, Viblo is the lowest 
vibrational frequency for a given species; it is used in the collision step routines. In rate constant 
input files, A real number must be input for Viblo, but it is ignored by MultiWell. 
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Line 4 
Column label (skipped when read by MultiWell, and therefore can be left blank) 
 
For sums of states, this line might read: 
" No. (cm-1)    Density    Sum" 

For a rate constant input file, this line might read: 
" No.   Energy  Dummy  RateConst" 
 
Line 5 
(Repeated Isize times) 
 
j, A, B, C 
[INTEGER,REAL,REAL,REAL]  
 
FOR FILES CONTAINING SUMS & DENSITIES  
j = array element index (a total of Isize elements)  
A = energy [starting with E = 0.0] (units: cm-1)  
B = density of states (units: states/cm-1)  
C = sum of states (dimensionless)  
 
FOR FILES CONTAINING SPECIFIC RATE CONSTANTS [k(E)'s]  
j = array element index (a total of Isize elements)  
A = energy [starting with E = 0.0] (units: cm-1)  
B = dummy real number (ignored by MultiWell)  
C = k(E) (units: s-1) 
 
Line 6 
 
BLANK LINE TO INSURE THAT THE LAST LINE IS FOLLOWED BY A CARRIAGE 
RETURN (needed for all READ statements). THE CARRIAGE RETURN IS EASILY 
OVERLOOKED. 
  



 

- 26 - 

Initial Energy Distribution Function 
 

File name: "multiwell.pstart" 
 
Location: EXTERNAL DATA FILES MUST BE STORED IN FOLDER (DIRECTORY) 
"DensData", which is in the folder (directory) from which the MultiWell application is executed.  
 
Line 1 
 
Jsize, Hstart, Edel  

 
Jsize user-selected array length (≤14000 elements). Jsize must be chosen to be large 

enough (for a given Hstart) so that the entire initial energy distribution is 
represented.  

Hstart energy grain (express in cm-1) for initial energy distribution: "Pstart". Hstart 
should be ≥Egrain1 used to generate sums and densities of states. 

Edel energy origin of array, relative to zero point energy of initial excited well (express 
in cm-1)  

 
Line 2  
 
(REPEAT Jsize times) 

 
DUMMY, Pstart  

 
DUMMY Must be input, but ignored by MultiWell (may be equal to E, for example)  
Pstart NORMALIZED cumulative initial energy distribution function. Thus, 

Pstart(i) ranges monotonically from Pstart(1)=0 (approximately), up to 
Pstart(Jsize) = 1.0. 

(Note that other columns may be present in the data file, but they will be ignored.) 
 

Line 3 
 
BLANK TO INSURE THAT THE LAST LINE IS FOLLOWED BY A CARRIAGE RETURN 
(needed for all READ statements). THE CARRIAGE RETURN IS EASILY OVERLOOKED. 
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2.10 Fatal Input Errors 

A FATAL INPUT ERROR is reported and execution is stopped if any of the following 
parameters for a well or transition state does not match the corresponding value from Line 2 of 
multiwell.dat:  

Egrain1, imax1, Isize , Emax2 

Incompatible Keywords or Input Data: 
ILT and CENT1, CENT2, or CENTX  
ILT and TUN 
RKE and TUN 
CENT and TUN 
CENT1, CENT2, or CENTX with TSmom(Mol,nchann) ≤ 0 
(moment of inertia or rotational constant of the transition state) 
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3. DenSum: Separable Sums and Densities of States 
This computer code carries out exact counts for sums and densities of states for separable 

degrees of freedom via the Stein-Rabinovitch10 extension of the Beyer-Swinehart algorithm.11 
Optionally, the Whitten-Rabinovitch approximation28,29 can be used. 

 
Default array dimensions are easily changed in file src/densum/declare.inc 

150 degrees of freedom (enough for a 50 atom molecule) 
50000 energy grains (enough for 100000 cm-1 energy maximum, with 2 cm-1 

grains) 
 
Output Files  

densum.out File containing complete output. 
densum.lev Energy levels of quantized degrees of freedom. 
<FNAME>.dens File formatted for input into MultiWell. 

Example data and output files are given in the examples directory:  
multiwell/examples/densum-examples. 
 

3.1 Functional Forms 

 (An)Harmonic Vibration (vib) 

The energy of an anharmonic oscillator is 

E =ω e v + 1
2

⎛
⎝⎜

⎞
⎠⎟ +ω exe v + 1

2
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where ωe is the harmonic frequency and the zero point energy (v = 0) is  

ZPE =ω e
1
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For a Morse oscillator, the anharmonicity is 

ω exe = − ω e
2

4De

 

where De is the Morse oscillator well depth (from the bottom of the potential well). Note the 
sign convention for anharmonicity used here is not the usual convention. 

By an "Observed frequency" (key word "obs") for a vibrational mode, we mean the 
fundamental frequency, which is the 0-1 transition frequency for the specific mode when all 
other vibrational quantum numbers equal zero. When ωexe≠0 for a separable mode, the 



 

- 29 - 

fundamental frequency ωf is related to the harmonic frequency according to the following 
expression: 

ω e =ω
f − 2ω exe  

For an "observed" frequency, Densum and Thermo compute ωe from this expression and use 
it to calculate the vibrational energy levels. 

Classical Rotation (rot) 

DenSum uses the method of Astholz et al.30 For expressions, see Appendix 5 of Robinson 
and Holbrook,31 or Section 4.5 of Holbrook et al.32 Also see Appendix (Theoretical Basis), 
Section A.2.2 Note that starting with version 2.04, classical rotations are treated purely 
classically; previously, a semi-classical approximation was imposed (which amounted to 
requiring that the sum of states is equal to unity at E = 0). See Section 9.4 for a discussion 
of proper input for External Molecular Rotations. 

Quantized Rotation (qro) 

When J = 0, E = 0 and degeneracy (g) is unity. When J >0, the degeneracy (g) and the 
energy depend on the dimensionality (d) of the rotor33: 

d = 1 g = 2 E = BJ2  J = 0,1,2,3,... 

d = 2 g = (2J + 1) E = BJ(J+1)   J = 0,1,2,3,... 

d = 3 g = (2J + 1)(2J + 1)  E = BJ(J+1)   J = 0,1,2,3,... 

Prior to version 2.04, the sum of states at E=0 was set equal to unity, regardless of 
rotational symmetry number (σ). The current version gives the sum of states equal to 1/σ at 
E=0. 

See Section 9.4 for a discussion of proper input for External Molecular Rotations. 

K-rotor Rotation (kro) 

This degree of freedom type should NOT be selected for normal calculations using 
MultiWell. It is provided in DenSum only for special purposes. See Section 9.4 for a 
discussion of proper input for External Molecular Rotations. 

Particle in a Box (box) 

1-D box of length L with particle of mass m: 

      E = h2n2

8mL2
− h2

8mL2
     for n = 1,2,3,... 



 

- 30 - 

where E is the energy in excess of the "zero" point energy (when n=1). 

The effects of higher dimensions are additive. For example, consider a 2-D box of 
dimensions Lx, Ly:   

 E = h2

8m
nx
Lx

⎡

⎣
⎢

⎤

⎦
⎥

2

+
ny
Ly

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

− 1
Lx

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 1
Ly

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      for ni = 1,2,3,... 

Because the energies in multiple dimensions are additive, DenSum and Thermo 
consider them separately. The "frequency parameter" that is needed by DenSum and Thermo:  
h2/(8mL2). Furthermore, DenSum and Thermo assume Lx = Ly = ...= L.  

1-D Hindered Rotation, Symmetrical (hra, hrb, hrc) 
These types are intended for use with symmetrical internal rotors (e.g. a CH3 rotor). 

Relationships among parameters for a hindered rotor: 

B / cm−1 = 16.85763
Ir / amu  Å

2  

V = 1
B

ω
n

⎡
⎣⎢

⎤
⎦⎥

2

 

where B is the rotational constant, Ir is the reduced moment of inertia, V is the barrier to internal 
rotation, and ω is the small amplitude harmonic frequency (cm-1). For convenience, three 
methods are provided input of any combination of two independent parameters from the set: V, 
ω, Ir. 

1-D Hindered Rotation, General (hrd) 
This type is general, but is particularly useful for unsymmetrical rotors (e.g. the CHF2-

CH2Cl internal rotor), although it can also be used for symmetrical rotors. For this type, one must 
provide the torsional potential energy and reduced moment of inertia (or rotational constant) as 
functions of the dihedral angle χ (radians). 

For convenience, three forms of the torsional potential energy are accepted (all 
coefficients in units of cm-1):  

Type Vhrd1 V χ( ) = Vn
2
1− cos nσV χ +ϕV( )( )⎡⎣ ⎤⎦

n=1

N

∑  

  

Type Vhrd2 V χ( ) =V0 + Vn cos nσV χ +ϕV( )( )
n=1

N

∑  



 

- 31 - 

Type Vhrd3 V χ( ) =V0 + Vn
c cos nσV χ +ϕV( )( )

n=1

N

∑ + Vn
s sin nσV χ +ϕV( )( )

n=1

N

∑  

where χ is the dihedral angle (radians), σv is the symmetry number for the potential energy, φV is 
a phase angle for the potential (radians). 

Also for convenience, either the rotational constant or the moment of inertia, which are 
functions of the dihedral angle, can be entered (all coefficients in units of cm-1). It is VERY 
IMPORTANT that the angles are defined in the same way both for the potential and for the 
mass factor. 

Type Bhrd1  (all coefficients in units of cm-1) 

 B χ( ) = B0 + Bn cos nσ B χ +ϕB( )( )
n=1

N

∑  

 
Type Ihrd1 (all coefficients in units of amu.Å2) 

 I χ( ) = I0 + In cos nσ I χ +ϕ I( )( )
n=1

N

∑  

where χ is the dihedral angle (radians), σB and σI are symmetry numbers and φB and φI are phase 
angles. Repeat: It is VERY IMPORTANT that the same phase angle be used both for the 
potential and for the mass factor: φV = φB or φI. 

If the reduced moment of inertia or rotational constant is assumed to be independent of 
dihedral angle, just the one B0 or I0 term is needed. 

Translation (trn) 
DenSum uses an adaptation of the method of Astholz et al.,30 but applies it to relative 

translations (standard state corresponding to 1 molecule/cc). According to this method, the 
number of translational states (G(E)) in a single energy grain (δE) is given by 

G E( ) = F E 3/2 − E −δE( )3/2⎡⎣ ⎤⎦  

where F is a constant that depends on µ, the reduced mass (gram atomic mass units). When 
classical rotors are convolved with the 3-D translation, the following expression is used:  

G E( ) = Fr E r+3( )/2 − E −δE( ) r+3( )/2⎡
⎣

⎤
⎦  

where Fr depends on µ, the number of rotor degrees of freedom (r), and the moments of 
inertia. For more details, see the Appendix (Theoretical Basis). Note that G(0) = 0, since the 
nominal energy corresponds to the top energy in each bin. 
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3.2 Data File Format 
Note: Starting with version 2009.0, the data file format is no longer 
compatible with previous versions. 

 
Line 1 
 
TITLE (CHARACTER*180): up to 180 characters 
 
Line 2 
 
FNAME 

 
FNAME (CHARACTER*10): name of file to be created with ".dens" appended (up to 10 

characters). Example: "hexadiene" produces file named "hexadiene.dens". 
 

Line 3 
 
N, IWR, VHAR,VROT 

 
N no. of DoF's, IWR (flag) 
IWR 0: Uses exact state counts (energy grain = Egrain1) 
 1: Uses Whitten-Rabinovitch state densities 
VHAR KEYWORD for vibrations 
 'HAR': for vibrational frequencies input as harmonic frequencies. 
 'OBS': for vibrational frequencies input as 0-1 fundamental frequencies. 
VROT KEYWORD for molecular internal and external rotations, except for hindered rotors 

of type hrd (see special instructions below for type hrd) 
 'AMUA': for moments of inertia input with units of amu Å2. 
 'GMCM': for moments of inertia input with units of g cm2. 
 'CM-1': for rotational constant input with units of cm-1. 
 'MHZ': for rotational constant input with MHz. 
 'GHZ': for rotational constant input with GHz. 
 (some combinations of upper/lower case are also accepted) 

Notes: (a) All of the rotational information in a DenSum data file must be given in the form 
specified by VROT; (b) VHAR and VROT can be stated in either order on Line 3. 
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Line 4 
 
Egrain1, Imax1, Isize, Emax2 

 
Egrain1 energy grain in units of cm-1 
Imax1 number of array elements in first segment of double array* 
Isize total size of double array (number of elements) 
Emax2 maximum energy (cm-1) for calculation 
 

* Starting with MultiWell Version 2.08, densum.out provides information about the 
number of elements (Imax1) needed to achieve fluctuations of less than 5% in the density of 
states. If Egrain1 and Imax1 are chosen so that fluctuations in the density of states is greater than 
5%, a warning is printed to the screen with a suggestion as to what Imax1 should be increased to. 
Note that a user can choose to disregard this warning and proceed to run MultiWell. 

 
Line 5..N+3 
 
MODE(I), IDOF(I), AAA(I), BBB(I), CCC(I) 

 
MODE index number for degree of freedom 
IDOF KEY WORD for type of degree of freedom 

'vib' (vibration) 
AAA = vibration frequency (cm-1) [see VHAR, line 3] 
BBB = vibration anharmonicity (cm-1) 
CCC = vibration degeneracy 

'box' (particle-in-a-box vibration) 
AAA = vibration frequency parameter (cm-1) 
BBB = (not used; but a dummy placeholder value must be included) 
CCC = vibration degeneracy 

'rot' (classical rotation) 
AAA = rotation moment of inertia [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = rotation dimension 

'qro' (quantized rotation) 
AAA = rotation moment of inertia  [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = rotation dimension 

'kro' (K-rotor (1-dimensional); quantized rotation) 
AAA = rotation moment of inertia  [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = J (quantum number for total angular momentum) 

'hra' (1-D symmetrical hindered rotor) 
AAA = vibration frequency (cm-1) 
BBB = reduced moment of inertia  [units specified by Vrot, Line 3] 
CCC = symmetry of Potential Energy (number of minima per 2π) 
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 [For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrb' (1-D symmetrical hindered rotor) 
AAA = vibration frequency (cm-1) 
BBB = barrier (cm-1) 
CCC = symmetry of Pot. Energy (number of minima per 2π)) 
[For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrc' (1-D symmetrical hindered rotor) 
AAA = reduced moment of inertia  [units specified by Vrot, Line 3] 
BBB = barrier (cm-1) 
CCC = symmetry of Pot. Energy (number of minima per 2π)) 
[For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrd' (1-D General hindered rotor) 
Note: care must be taken to treat optical isomers and unsymmetrical 
hindered internal rotors in a mutually consistent fashion (see Section 7.5). 
AAA = total number of coefficients for potential energy function (including V0 

term, if present). 
BBB = total number of coefficients for rotational constant or moment of 

inertia function (including I0 or B0). 
CCC = symmetry number of internal hindered rotor (symmetry number of a 

symmetric rotor; unity for an non-symmetric rotor) 
INSERT 2 ADDITIONAL LINES: 
LINE1: VTYPE, SYMMV, PHASEV, COEFF1, COEFF2, ...(in order) 
 VTYPE = "Vhrd1", "Vhrd2", or "Vhrd3" 
 SYMMV = symmetry number for the potential 
 PHASEV = phase angle (radians) for potential 
 COEFF1 = coefficients (including V0, if present) for potential, in order, on 

the same line (units of cm-1) 
LINE2: MTYPE, SYMMM, PHASEV, COEFF1, COEFF2, ...(in order) 
 MTYPE = "Bhrd1" for rotational constant or "Ihrd1" for moment of 

inertia 
 SYMMM = symmetry number for Bhrd1 or Ihrd1 
 PHASEM = phase angle (radians) for Bhrd1 or Ihrd1 
 COEFF1 = coefficients (including B0 or I0) for Bhrd1 (units of cm-1) or 

Ihrd1 (amu•Å2 units), in order, on the same line 
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'trn' (3-dimensional relative translation) 
AAA = mass of A (amu) 
BBB = mass of B (amu) 
CCC = ignored, but convenient to set it equal to "3" 

 
Line N+4  
 
BLANK LINE TO INSURE THAT THE LAST LINE IS FOLLOWED BY A CARRIAGE 
RETURN (needed for all READ statements). THE CARRIAGE RETURN IS EASILY 
OVERLOOKED. 
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3.3 DenSum in Batch Mode 
In order to run densum with the 'batch' option, one must first prepare a file: 

densum.batch. This file lists the names of the DenSum data files (".vibs files") to be 
processed and the energy grain and double array boundaries. The batch file format is given 
below. 

 
To use this option, the DenSum data files must all reside in one directory (e.g. directory 

/vibs) and each must be named "<name>.vibs", where <name> does not contain any blank 
spaces. When listed in densum.batch, each file name must be listed on a separate line, 
including the extension ".vibs". 

  

densum.batch Batch File Format 

Line 1 Egrain1, Imax1, Isize,  Emax2 

Line 2 <name1>.vibs  

Line 3 <name2>.vibs  

Line 4 <name3>.vibs 

.... etc.  

 <end of file> 
------------------------------------- 
Sample densum.batch for three .vibs files 

10. , 400 , 500 , 50000. 
B1.vibs 
B2.vibs 
CH3CO.vibs 
------------------------------------ 
 

Execution 

a) On linux: 

From within the directory in which densum.batch and the .vibs data files 
reside,  

type  '<PATH>densum -batch' in a terminal shell, where PATH is the full 
path to the densum executable. 

or 
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type  'densum -batch' in a terminal shell, if the PATH variable has been set to 
include the /bin directory that holds the densum executable. 

or 

type './densum -batch' in a terminal shell, if a copy of the densum 
executable resides in the same directory with densum.batch and the .vibs files. 
 

b) On windows  

 There are two possibilities:  

1) type "densum -batch" in a DOS shell 

or 

2) double-click on "densum-batch.bat". Note that densum.exe and 
densum-batch.bat must be in the same directory as densum.batch and the 
.vibs files. 
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4. MomInert: Moments of Inertia 
This code was written mostly by Nicholas F. Ortiz under the direction of John R. Barker. 

From Cartesian coordinates, it calculates the principal moments of inertia and approximate 
reduced moment of inertia for an internal rotation. 

Example data and output files can be down-loaded from the MultiWell web site: 
http://aoss.engin.umich.edu/multiwell/. 

Note that computer program lamm, described in Chapter 8 is designed to assist in 
computing moments of inertia as a function of dihedral angle. Thus lamm is more appropriate 
than MomInert for flexible internal rotations. 

 

4.1 Data File Format 
Note: Starting with version 2.0, the data file format is no longer compatible 
with previous versions. 
 
To run Mominert using the default filename (mominert.dat): 

 
LINUX/UNIX: in the directory where the input data file resides, type: 
 
<PATH>/multiwell-<version>/bin/mominert <RETURN> 
 

where <PATH> designates the PATH to /multiwell-<version>. If directory 
/multiwell-<version> resides in the user home directory, type: 

 
~/multiwell-<version>/bin/mominert <RETURN> 
 
WINDOWS in a DOS window: in the directory where the input data file resides, type: 
 
<PATH>/multiwell-<version>/bin/mominert <RETURN> 
 
For example: 
 
~/multiwell-2013/bin/mominert 
 

To run Mominert using a user-defined filename (FileName.dat): 
 

Follow the same procedures described above, but type: 
 
<PATH>/multiwell-<version>/bin/mominert <FileName> <RETURN> 
 

For example: 
 
~/multiwell-2013/bin/mominert final.dat 
 
The resulting output file will take the same prefix: final.out. 
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Line 1 
 
TITLE A line, up to 100 characters, describing the data. This title is reproduced in the 

output file. 
 
Line 2 
 
UNITS  Keyword designating units of coordinate values. 
 
ANGS Angstrom units. 
BOHR Atomic (Bohr) units (1 Bohr  ≈ 0.529 Å) 
 
Line 3 
 
NATOMS  Total number of atoms in the molecule (up to 100 atoms). 
 
Line 4 
(Repeat for every atom type [see Section 9.7]) 
 
ATYPE, IA, X, Y, Z 

 
ATYPE case sensitive atomic symbol, e.g. "C", "H", "Br79" (see Sec. 9.7) 
IA Index number of the atom (1 to NATOMS).  
X,Y,Z Cartesian coordinates (Å or Bohr; see Line 2) of the atom. 
 
To assign an arbitrary mass to an atom: 

1. Designate "XX" for ATYPE (instead of e.g. "H" or "C") in Line 3. 
2. On the line following the atom type designation, insert a line giving the mass to be 

assigned to this particular atom. 
 
This must be done each time a special mass is to be assigned. It is not necessary for the mass 
to always be the same. In other words, atom type "XX" may be designated multiple times in 
the same molecule, and a different mass may be specified each time. 

 
Line 5 
 
IAI, IAJ 
 
Atom indices for the two atoms defining the axis of internal rotation. If the atom indices are set 
equal to zero, then internal rotor is not calculated and Line 6 and Line 7 can be omitted. 
 
Line 6 
 
NR 
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Number of atoms in one of the two rotating moieties. 
 
Line 7 
 
List of the atom indices that comprise the rotating moiety containing NR atoms. 
 
Line 8  
 
For additional internal rotors, REPEAT lines 5-7. TO TERMINATE, enter two zeros: "0 , 0". 
 
Line 9 
 
BLANK LINE TO INSURE THAT THE LAST LINE IS FOLLOWED BY A CARRIAGE 
RETURN (needed for all READ statements). THE CARRIAGE RETURN IS EASILY 
OVERLOOKED. 

 

4.2 Computational Approach 
This code uses the two axis-defining atoms and one other atom to define two 

perpendicular planes which intersect at the rotation axis. The distance from all atoms in the 
molecule to each plane is calculated. The Pythagorean Theorem is then used to define the 
distance of each atom to the axis. The mass is defined for each atom type, and then the mass and 
distance are used to calculate the moment of inertia for the internal rotations in amu Å2. 

The center-of-mass is then defined. This is used to calculate all external products and 
moments of inertia. These values are put into the proper matrix, and eigenvalues are found. The 
eigenvalues are the principle moments of inertia.  

For the reduced moment of inertia for internal rotation, MomInert uses the 
approximation that the reduced moment is calculated for the axis that contains the twisting bond. 
This approximation is reasonably accurate (errors of less than 5-10%) for many species.34 
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5. Thermo: Thermochemistry 

THERMO calculates equilibrium constants, thermodynamic parameters, and 
canonical transition state theory rate constants (including Eckart tunneling through an 
unsymmetrical barrier) via standard statistical mechanics formulae. It can also compute 
canonical rate constants using W. H. Miller's Semiclassical Transition State Theory. 

Example data and output files are given in the examples directory 
 
Note that the data file for Thermo (thermo.dat) is intentionally very similar in 

format to the data file for DenSum (densum.dat). Thus major parts of the data files can be 
copied and pasted. 

5.1 Thermodynamic Database 
A small thermodynamic database is provided in the main MultiWell directory. The 

chemical species in this database are of interest to our group. We add entries from time to time, 
depending on our current research interests. The NIST WebBook35 is a good source for input 
data, as are the NIST-JANAF Thermochemical Tables.36 

5.2 Thermodynamic Output 
When given a collection of molecular properties, thermo uses statistical mechanics 

formulae to calculate the corresponding thermodynamics parameters. Thermo can also calculate 
canonical transition state theory rate constants. The general output file, which contains all of the 
information needed by most users, is "thermo.out". The input and output are intended to be 
easily understood, but some items are explained here. 

Standard State: the standard state must be selected. The conventional standard state for most 
tabulations is 1 bar, ideal gas. The numerical value of the equilibrium constant for a reaction 
(Kequil) depends on the selection of the standard state. When comparing forward and reverse 
reaction rate constants, for example, it is often more convenient to choose the standard state of 1 
molecule cm-3.  

Allowed Standard States: 
• 1 bar, ideal gas 
• 1 atm, ideal gas 
• 1 molecule cm-3, ideal gas 

Molar Enthalpy: The enthalpy for formation at 0 K is required input. Thermo output echoes the 
input and also reports the enthalpy of formation at 298.15 K and the standard free energy of 
formation (DelG(298)). 

Equilibrium constant: Kequil is reported for every temperature. In addition, it is reported as a 
function of temperature: Kequil = A(T)*exp(B(T)/T). The parameters A(T) and B(T), 
which are obtained by finite differences, are in general functions of temperature. The accuracy of 
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these parameters is less than the accuracy of Kequil itself. Note that the numerical value of the 
equilibrium constant depends on the standard state. 

Canonical Transition State Theory Rate Constant: "RATE k(T)" is reported for every 
temperature. In addition, it is reported as a function of temperature: k(T) = 
A(T)*exp(B(T)/T). The parameters A(T) and B(T), which are obtained by finite 
differences, are in general functions of temperature. The accuracy of these parameters is less than 
the accuracy of k(T) itself. Note that the user should select the standard state of 1 molecule cm-3 
(i.e. "MCC") when calculating rate constants. 

Molar Entropy: the numerical value for the entropy depends on the standard state that is 
selected, as well as on the energy units selected. 

Molar Heat Capacity: Cp depends on energy units selected. 

Enthalpy Function: [H(T)-H(0)] depends on the energy units selected. 

Accuracy:  
All accuracies depend on the accuracy of the input data. For a given set of input data, the 

accuracies achieved by Thermo are relative to a benchmark based on the same input data. The 
benchmarks most commonly used are taken from the NIST-JANAF Thermochemical Tables.36 
Note that when rotations are treated classically, the entropy, heat capacity, free energy, and 
equilibrium constant are less accurate at low temperatures. 

• molecular weights are accurate to 0.002 g mol-1, or better. 

• enthalpies and Gibbs free energy for individual species generally agree with the JANAF tables 
to within 0.05 kJ mol-1, or better. 

• entropies for individual species are generally accurate to 0.1 J K-1 mol-1 or better. 

• electronic partition function is accurate to 0.1% or better. 

• enthalpy, entropy, heat capacity, and Gibbs free energy differences for reaction (DelS(rxn), 
DelH(rxn), DelCp(rxn) and DelG(rxn), respectively) are generally more accurate than 
the corresponding quantities for the individual species. 

 

5.3 Functional Forms 

 (An)Harmonic Vibration (vib) 

The energy of an anharmonic oscillator is 

E =ω e v + 1
2

⎛
⎝⎜

⎞
⎠⎟ +ω exe v + 1

2
⎛
⎝⎜

⎞
⎠⎟
2

− ZPE  
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where ωe is the harmonic frequency and the zero point energy (v = 0) is  

ZPE =ω e
1
2

⎛
⎝⎜

⎞
⎠⎟ +ω exe

1
2

⎛
⎝⎜

⎞
⎠⎟
2

. 

For a Morse oscillator, the anharmonicity is 

ω exe = − ω e
2

4De

 

where De is the Morse oscillator well depth (from the bottom of the potential well). Note the 
sign convention for anharmonicity used here is not the usual convention. 

By an "Observed frequency" (key word "obs") for a vibrational mode, we mean the 
fundamental frequency, which is the 0-1 transition frequency for the specific mode when all 
other vibrational quantum numbers equal zero. When ωexe≠0 for a separable mode, the 
fundamental frequency ωf is related to the harmonic frequency according to the following 
expression: 

ω e =ω
f − 2ω exe  

For an "observed" frequency, Densum and Thermo compute ωe from this expression and use 
it to calculate the vibrational energy levels. 
 

Classical Rotation (rot) 

DenSum uses the method of Astholz et al.30 For expressions, see Robinson and 
Holbrook, Appendix 5.31 

See Section 7.4 for a discussion of External Molecular Rotations. 

Quantized Rotation (qro) 

When J = 0, E = 0 and degeneracy (g) is unity. When J >0, the degeneracy (g) and the 
energy depend on the dimensionality (d) of the rotor [see J. L. McHale, Molecular 
Spectroscopy (Prentice-Hall, 1999), 216f]: 

d = 1 g = 2 E = BJ2,   J = 0,1,2,3,... 

d = 2 g = (2J + 1) E = J(J+1) 

d = 3 g = (2J + 1) (2J + 1)  E = J(J+1) 

See Section 9.4 for a discussion of External Molecular Rotations and the proper input. 
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Symmetric Top (top): 
For a symmetric top with external rotational constants A, and B = C, the rotational energy 

is given by 

  
Etop = BJ J +1( ) + A− B( )K 2  
or 

  
Etop = BJ J J +1( ) + BK K 2  

where J is the quantum number of total angular momentum (the "J-rotor") and K is the quantum 
number for the projection of the angular momentum vector J on the molecular symmetry axis 
(the "K-rotor"). Quantum number K is restricted to the range –J ≤ K ≤ +J. Here, the partition 
function for the combined J- and K-rotors is evaluated by direct summation using the above 
equations and including the restriction on the range of K. Note that the input consists of BJ, BK, 
and a rotational symmetry number. A common convention is to set this symmetry number equal 
to unity and include instead include the symmetry of this symmetric top in the total external 
symmetry number. 

Particle in a Box (box) 

1-D box of length L with particle of mass m: 

      E = h2n2

8mL2
− h2

8mL2
     for n = 1,2,3,... 

where E is the energy in excess of the "zero" point energy (when n=1). 

The effects of higher dimensions are additive. For example, consider a 2-D box of 
dimensions Lx, Ly:   

 E = h2

8m
nx
Lx

⎡

⎣
⎢

⎤

⎦
⎥

2

+
ny
Ly

⎡

⎣
⎢
⎢

⎤

⎦
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2

− 1
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⎡

⎣
⎢

⎤

⎦
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2

+ 1
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⎡
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⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      for ni = 1,2,3,... 

Because the energies in multiple dimensions are additive, DenSum and Thermo 
consider them separably. The "frequency parameter" that is needed by DenSum and Thermo: 
h2

8mL2
. Furthermore, DenSum and Thermo assume Lx = Ly = ...= L.  

1-D Hindered Rotation, Symmetrical (hra, hrb, hrc) 
These types are intended for use with symmetrical internal rotors (e.g. a CH3 rotor). 

Relationships among parameters for a hindered rotor: 

B / cm−1 = 16.85763
Ir / amu  Å

2  
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V = 1
B

ω
n

⎡
⎣⎢

⎤
⎦⎥

2

 

where B is the rotational constant, Ir is the reduced moment of inertia, V is the barrier to internal 
rotation, and ω is the small amplitude harmonic frequency (cm-1). For convenience, three 
methods are provided input of any combination of two independent parameters from the set: V, 
ω, Ir. 

1-D Hindered Rotation, General (hrd) 
This type is general, but is particularly useful for unsymmetrical rotors (e.g. the CHF2-

CH2Cl internal rotor), although it can also be used for symmetrical rotors. For this type, one must 
provide the torsional potential energy and reduced moment of inertia (or rotational constant) as 
functions of the dihedral angle χ (radians). 

For convenience, three forms of the torsional potential energy are accepted (all 
coefficients in units of cm-1):  

Type Vhrd1 V χ( ) = Vn
2
1− cos nσV χ +ϕV( )( )⎡⎣ ⎤⎦

n=1

N

∑  

  

Type Vhrd2 V χ( ) =V0 + Vn cos nσV χ +ϕV( )( )
n=1

N

∑  

Type Vhrd3 V χ( ) =V0 + Vn
c cos nσV χ +ϕV( )( )

n=1

N

∑ + Vn
s sin nσV χ +ϕV( )( )

n=1

N

∑  

where χ is the dihedral angle (radians), σv is the symmetry number for the potential energy, φV is 
a phase angle for the potential (radians). 

Also for convenience, either the rotational constant or the moment of inertia, which are 
functions of the dihedral angle, can be entered (all coefficients in units of cm-1). It is VERY 
IMPORTANT that the angles are defined in the same way both for the potential and for the 
mass factor. 

Type Bhrd1  (all coefficients in units of cm-1) 

 B χ( ) = B0 + Bn cos nσ B χ +ϕB( )( )
n=1

N

∑  

 
Type Ihrd1 (all coefficients in units of amu.Å2) 

 I χ( ) = I0 + In cos nσ I χ +ϕ I( )( )
n=1

N

∑  
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where χ is the dihedral angle (radians), σB and σI are symmetry numbers and φB and φI are phase 
angles. Repeat: It is VERY IMPORTANT that the same phase angle be used both for the 
potential and for the mass factor: φV = φB or φI. 

If the reduced moment of inertia or rotational constant is assumed to be independent of 
dihedral angle, just the one B0 or I0 term is needed. 

Hindered Gorin Model (gor) and Fitting to Experimental Rate Constants (fit) 
Thermo includes the capability to automatically find the hindrance parameters for the 

Hindered Gorin transition state.37-44 One can choose one or both of the following types 
(IDOF) of degrees of freedom. 

1) IDOF = gor selected for one vibrational stretching mode. For a selected potential 
energy function, Thermo finds the center of mass distance rmax corresponding to maximum of 
Veffective at temperature T,  where the rotational energy in the 2-D pseudo-diatomic rotation is 
assumed to be RT. From the value of rmax, Thermo computes the 2-D moment of inertia. 

2) IDOF = fit selected for two (linear molecule) or three (non-linear) rotational 
dimensions. Thermo finds the hindrance parameters γ (gamma) and η (eta) that produce a 
good fit at each temperature to experimental rate constants (one for each temperature) that 
are entered. 

γ = 1−η( )1/2   

If both IDOF = gor and IDOF = fit are selected, Thermo finds the maximum of 
Veffective and uses it to find the hindrance parameters (gamma and eta) that produce a good 
fit to experimental rate constants (one for each of the Nt  temperatures) that are entered.  

The selectable potential energy functions are: 

MORSE (Morse Oscillator) 

VMorse r( ) = De 1− exp −βMorse r − re( )⎡⎣ ⎤⎦{ }2 − De  

βMorse = 2πνe
µ
2De

 

VARSHNI (Varshni Oscillator45) 

VVarshni (r) = De 1−
re
r

⎛
⎝⎜

⎞
⎠⎟ exp −βVarshni r

2 − re
2( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

2

− De  

βVarshni =
1
2re

2πν µ
2De

− 1
re

⎡

⎣
⎢

⎤

⎦
⎥ =

1
2re

βMorse −
1
re

⎡

⎣
⎢

⎤

⎦
⎥  
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sMORSE ("Stiff Morse" Oscillator) 

This is a Morse oscillator, but replaces βMorse  with βStiff = βMorse 1+ cs r − re( )2⎡
⎣

⎤
⎦ ; cs is 

an empirical parameter and must be ≥0. 

The input is assumed to correspond to the following generic recombination reaction: 

A + B→C‡  

In the thermo input, A and B are labeled as reactants ("reac") and C‡ is labeled as a 
transition state ("ctst"). For a barrier-less recombination reaction, the enthalpy of 
formation at 0 K (DelH) for C‡ must be set equal to the sum of the enthalpies of formation 
for the two reactants. All of the internal and rotational degrees of freedom for A and B are 
entered as usual. The internal degrees of freedom for C‡ consist of the combined degrees of 
freedom (internal and external) of A and B, plus the external rotations for C‡. Thus the 
number of degrees of freedom (including degeneracies and multiple dimensions) of C‡ is  

nC = nA + nB + nC
rots  

where nA and nB are the total number of degrees of freedom for A and B, and nC
rots is the 

number of external rotations of C‡. 

In order to find the center of mass distance rmax corresponding to maximum of 
Veffective at temperature T, the external 2-D rotation for C‡ is labeled "gor" (see below). This 
signals that this particular entry is a dummy and will be adjusted in the process of finding the 
maximum Veffective. The potential energy function is specified later in the data file (see 
below). 

In order to adjust the "hindrance" to fit specified rate constants, some of the rotations 
in C‡ that were originally associated with A and B must be multiplied by γ (see above). These 
are labeled "fit" (see below). These rotations do not include internal rotation about the new 
bond in C‡, but only the rotations about internal axes perpendicular to the new bond. Later in 
the data file, the (experimental) rate constants to be fitted are entered... one for each 
temperature. 

Set of Fully Coupled Anharmonic Vibrations (qvb) 
This type specifies that program Thermo must read a supplementary data file named 

<name>.qvb, which must be generated previously by program adensum (Section 7.2). This 
supplementary file must be present in the same directory as data file thermo.dat. See Section 
7.2 for more details. By using this supplementary data file, Thermo can utilize full intermode 
vibrational anharmonic coupling when computing thermodynamic data. This coupling is most 
important at high temperatures. This option is used when computing thermal rate constants with 
semi-classical transition state theory (SCTST; see Sections 7.4 and 9.9 for more details). 
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Thermal Rate Constants from SCTST (crp) 
This type specifies that program Thermo reads a supplementary data file named 

<name>.qcrp, which must be generated previously by program sctst (Section 7.4) File 
<name>.qcrp must be present in the same directory as data file thermo.dat. See Sections 
7.4 and 9.9 for more details. By using this supplementary data file, Thermo can utilize the semi-
classical transition state theory (SCTST) of W. H. Miller and coworkers. SCTST accounts for 
fully coupled degrees of freedom, including the reaction coordinate. As a result, the theory 
incorporates multidimensional quantum tunneling along the curved reaction path, which is very 
important at low temperatures. The degree of freedom type "qvb" is usually also used when 
computing SCTST rate constants (see the preceding paragraph) in order to obtain good accuracy 
at both low and high temperatures. 
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5.4 Data File Format 
Note: Starting with version 2009.0, the data file format is no longer 

compatible with previous versions. 
 
To run Thermo using the default filename (thermo.dat): 

 
LINUX/UNIX: in the directory where the input data file resides, type: 
 
<PATH>/multiwell-<version>/bin/thermo <RETURN> 
 

where <PATH> designates the PATH to /multiwell-<version>. If directory 
/multiwell-<version> resides in the user home directory, type: 

 
~/multiwell-<version>/bin/thermo <RETURN> 
 
WINDOWS in a DOS window: in the directory where the input data file resides, type: 
 
<PATH>/multiwell-<version>/bin/thermo <RETURN> 
 
For example: 
 
~/multiwell-2013/bin/thermo 
 

To run Thermo using a user-defined filename (FileName.dat): 
 

Follow the same procedures described above, but type: 
 
<PATH>/multiwell-<version>/bin/thermo <FileName> <RETURN> 
 

For example: 
 
~/multiwell-2013/bin/thermo final.dat 
 
The resulting output file will take the same prefix: final.out. 

 
 
 

Line 1 
 
EKEY , SSKEY 

EKEY Key Word for Energy units: "KCAL" or "KJOU" (upper case characters). Note that 
"CM-1" is a reserved keyword to be fully implemented later. 

SSKEY Key Word for Standard State: "BAR", "ATM", or "MCC" (molecule/cc) 
 

Line 2 
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Nt       number of temperatures 
 
Line 3 
 
T1, T2, T3,...     List of Nt temperatures 
 
Line 4 
 
Ns        number of chemical species 
 
Line 5 for reactants, products, or "none"; see below for transition states 
 
REPROD, MOLNAME, DelH 
 
REPROD key word: 
 "reac" = reactant 
 "prod" = product 
 "none" = not included in equilibrium constant 
MOLNAME Name of chemical species (up to 10 characters) 
DelH enthalpy of formation at 0 K 
 
 
Line 5' for transition states 
 
REPROD, MOLNAME, DelH, vimag, VVR 
 
REPROD = "ctst"  
 For transition states, only. Assumes 1-D quantum mechanical tunneling via an 

unsymmetrical Eckart energy barrier. Tunneling is neglected if vimag = 0.0 or 
VVR = 0.0. 

      This choice calculates the canonical transition state theory rate constant based 
on reactant and transition state parameters.  It assumes the reaction consists of 
reactants (each labeled "reac") proceeding to the transition state (labeled 
"ctst"). Note that for bimolecular and termolecular reactions, the standard state 
should be set to "MCC" for concentration units. 

MOLNAME Name of transition state (up to 10 characters) 
DelH enthalpy of formation at 0 K. (Note: when using the SCTST (see section 7.4), 

DelH is the enthalpy of formation of the transition state at 0 K.) 
vimag magnitude of imaginary frequency (units of cm-1). When using the SCTST (see 

section 7.4), vimag is not read, but must be entered. Tunneling is neglected if 
vimag = 0.0. 

VVR Height of barrier for the reverse reaction (energy units specified in Line 1). When 
using the SCTST (see section 7.4), VVR is not read, but must be entered. 
Tunneling is neglected if VVR = 0.0. 
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Line 6 
 
FORMULA Empirical formula written in the usual way with atomic symbols. These symbols 

include "D" for deuterium and "T" for tritium. Special atomic symbols used for 
other isotopic species (e.g. "Cl35") are summarized in Section 9.7. Whenever an 
atomic symbol includes numeric characters (e.g. "Cl35"), it must be enclosed in 
square brackets (e.g. "[Cl35]"). Examples of empirical formulas: C2H6O, 
CH3CH2OH, (CH3)2OH, (CH3)2(N)O2H, CH[Br79]2(CH3)3, 
CH3OD, C([C13]H3)4. 
 

Lines 7-9  
 
Three comment lines 
 
Line 10  
 
Sym, Sopt, Nele 
 
Sym external symmetry number (INTEGER) 
Sopt number of optical isomers (INTEGER) 
Nele number of electronic energy levels (INTEGER) 
 
Line 11 

 
Elev, gele    (Repeat line for Nele electronic states) 

 
Elev electronic level energies (REAL). 
 NOTE: lowest level should be at energy Elev = 0.0. 
gele electronic level degeneracies (INTEGER) 

 
 
Line 12 

 
N , VHAR , VROT    number of vibrations and rotations to be read in 

 
VHAR KEYWORD for vibrations 
 'HAR': for vibrational frequencies input as harmonic frequencies. 
 'OBS': for vibrational frequencies input as 0-1 fundamental frequencies. 
VROT KEYWORD for molecular internal and external rotations, except for hindered rotor 

of type hrd (see special instructions below for type hrd) 
 'AMUA': for moments of inertia input with units of amu Å2. 
 'GMCM': for moments of inertia input with units of g cm2. 
 'CM-1': for rotational constant input with units of cm-1. 
 'MHZ': for rotational constant input with MHz. 
 'GHZ': for rotational constant input with GHz. 
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 (some combinations of upper/lower case are also accepted) 

Note: All of the rotational information for a given molecular species must be given in the form 
specified by VROT for that species. 

 
Line 13 

(repeat N times for the  N vibrations and rotations) 
 

MODE(I), IDOF(I), AAA(I), BBB(I), CCC(I) 
 

MODE index number for degree of freedom 
IDOF KEY WORD for type of degree of freedom 

'vib' (vibration) 
AAA = vibration frequency (cm-1) [see VHAR, line 3]] 
BBB = vibration anharmonicity (cm-1) 
CCC = vibration degeneracy 

'box' (particle-in-a-box vibration) 
AAA = vibration frequency parameter (cm-1) 
BBB = (not used; but a dummy placeholder value must be included) 
CCC = vibration degeneracy 

'rot' (classical rotation) 
AAA = rotation moment of inertia [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = rotation dimension 

'qro' (quantized rotation) 
AAA = rotation moment of inertia  [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = rotation dimension 

'kro' (K-rotor (1-dimensional); quantized rotation) 
AAA = rotation moment of inertia  [units specified by Vrot, Line 3] 
BBB = rotation symmetry number 
CCC = J (quantum number for total angular momentum) 

'top' (symmetric top) 
AAA = J-rotor constant  [units specified by Vrot, Line 3] 
BBB = K-rotor constant 
CCC = rotation symmetry number 

'hra' (1-D symmetrical hindered rotor) 
AAA = vibration frequency (cm-1) 
ANH = reduced moment of inertia  [units specified by Vrot, Line 3] 
CCC = symmetry of Potential Energy (number of minima per 2π) 
 [For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrb' (1-D symmetrical hindered rotor) 
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AAA = vibration frequency (cm-1) 
BBB = barrier (cm-1) 
CCC = symmetry of Pot. Energy (number of minima per 2π)) 
[For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrc' (1-D symmetrical hindered rotor) 
AAA = reduced moment of inertia  [units specified by Vrot, Line 3] 
BBB = barrier (cm-1) 
CCC = symmetry of Pot. Energy (number of minima per 2π)) 
[For an unsymmetrical hindered rotor, type 'hrd' is preferred. However, for a 
symmetrical potential energy and unsymmetrical mass distribution, the 
present type can be used for approximate results by giving the potential 
energy symmetry number CCC as a negative value (i.e. -CCC) and a new line 
inserted containing NSIG = symmetry number for the mass distribution] 

'hrd' (1-D unsymmetrical hindered rotor) 
Note: care must be taken to treat optical isomers and unsymmetrical 
hindered internal rotors in a mutually consistent fashion (see Section 7.5). 
AAA = total number of coefficients for potential energy function (including V0 

term, if present). 
BBB = total number of coefficients for rotational constant or moment of 

inertia function (including I0 or B0). 
CCC = symmetry number of internal hindered rotor (symmetry number of a 

symmetric rotor; unity for an non-symmetric rotor) 
INSERT 2 ADDITIONAL LINES: 
LINE1: VTYPE, SYMMV, PHASEV, COEFF1, COEFF2, ...(in order) 
 VTYPE = "Vhrd1", "Vhrd2", or "Vhrd3" 
 SYMMV = symmetry number for the potential 
 PHASEV = phase angle (radians) for potential 
 COEFF1 = coefficients (including V0, if present) for potential, in order, on 

the same line (units of cm-1) 
LINE2: MTYPE, SYMMM, PHASEV, COEFF1, COEFF2, ...(in order) 
 MTYPE = "Bhrd1" for rotational constant or "Ihrd1" for moment of 

inertia 
 SYMMM = symmetry number for Bhrd1 or Ihrd1 
 PHASEM = phase angle (radians) for Bhrd1 or Ihrd1 
 COEFF1 = coefficients (including B0 or I0) for Bhrd1 (units of cm-1) or 

Ihrd1 (amu•Å2 units), in order, on the same line 
'fit' (change the hindrance parameter of the Hindered Gorin Model to fit an 

experimental rate constants listed on LINE 14)  
AAA = rotational moment of inertia (amu Å2) for the internal rotor   
BBB = rotational symmetry number     
CCC = rotational dimension    
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'gor' (Gorin Model. Requires LINES 15-19) 
AAA =  2D adiabatic external rotor (amu Å2);  not used but always read.   
BBB = rotational symmetry number     
CCC = 2; rotational dimension  

'qvb' (read supplementary data file to account for fully-coupled vibrational 
anharmonicity) 

AAA =  dummy place-holder;  not used but always read.   
BBB = dummy place-holder;  not used but always read.   
CCC = dummy place-holder;  not used but always read.   

'crp' (read supplementary data file to compute thermal rate constant using 
SCTST). NOTE: when using this type, vimag and VVR on Line 5' are not read, 
but must be entered. 

AAA =  dummy place-holder;  not used but always read.   
BBB = dummy place-holder;  not used but always read.   
CCC = dummy place-holder;  not used but always read.   
 

 
RETURN TO LINE #5 and REPEAT FOR THE NEXT CHEMICAL SPECIES 
 
AFTER ALL CHEMICAL SPECIES HAVE BEEN ENTERED, RESUME HERE: 
 

Line 14       (required if  'fit' is used) 
kexp(1), kexp(2), .... list of Nt experimental recombination rate constants 
(units of cm3 molecule-1 s-1): one for each temperature.  

  
Line 15-19     (required if  'gor' is used) 
 
Line 15 readpot  Keyword 'MORSE',  'VARSHNI',  or 'sMORSE' (Stiff-Morse). 

This is the type of bonding potential energy function. 
Line 16 freq  Harmonic frequency (cm-1) of the normal mode associated with the 

forming bond.  
Line 17 De  Dissociation Energy De  (units of Eunit) of the forming bond. 
Line 18 re  EQUILIBRIUM center-of-mass distance (Å) between the of the two 

fragments that are forming the new bond. 
Line 19 c  Stiff-Morse parameter  (needed only for  'sMORSE'  type of potential).  

 
Line 20   (BLANK LINE) 
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6. gauss2multi: A Tool for Creating Data Files 

In many cases, one wants to create data files from calculated properties of molecules and 
transition states. The program gauss2multi is a tool designed to assist in this process. The 
source code is located in the multiwell/src directory and the executable is located in the 
multiwell/bin directory. The tool reads vibrational frequencies, coordinates, and energies 
from the standard .log or .out output files produced by GAUSSIAN 9846 and GAUSSIAN 
03.47 

 
In order to convert GAUSSIAN output files into multiwell input files you need: 

• GAUSSIAN output files with frequency calculation (file extension: .log or .out) 
• gauss2multi.cfg configuration file, which must reside in the same directory as the 

gaussian output files. An example is found in the examples directory 
  
The following files will be created for each GAUSSIAN file that is read: 
 
FILE NAME   DESCRIPTION (see MultiWell User Manual) 

name.coords        | mominert input  file 
name.coords.out    | mominert output file 
name.vibs | densum   input  file 
name.dens | densum   output file 
name.therm| thermo   input  file 
name.therm.out     | thermo   output file 
multiwell.dat      | rough drat of multiwell input file 
("name" refers to the GAUSSIAN file name, which cannot exceed 10 characters in length) 

 
gauss2multi.cfg Configuration File  

You can create and edit the configuration file by yourself or use the step-by-step script to 
create it. 
 
The gauss2multi.cfg configuration file contains the following items (an example file is 
given below): 

 
Line: 

1. Energy units: KCAL , KJOU, or CM-1  (use upper case characters) 
2. number of temperatures 
3. list of temperatures separated by one or more blank spaces 
4. Pressure units: TOR, BAR, ATM, or MCC (use upper case characters). [Note: the TOR 

pressure unit is not one of the allowed standard states, which are required for setting 
up data file thermo.dat; therefore, BAR is used as default in creating 
thermo.dat.] 

5. number of pressures 
6. list of pressures separated by one or more blank spaces 
7. Egrain, imax1, Isize, Emax2  
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8. index number (ascending order), name of gaussian output file (.log or .out), type 
of structure: WELL, PROD, or TS (use upper case characters) 

9. Repeat Line-8 for additional species. 
 

  
TO RUN gauss2multi 
 
There are two modes of operation:  
 
(a) To set up files for an entire multi-species model. 

In this case, the energies (i.e. ∆Hf
0(0 K)) for all of the species will be calculated with respect 

to the energy of the first well (index number = 1) listed in gauss2multi.cfg. 
 
In the same directory as the GAUSSIAN files, type 'gauss2multi' 

 
or  
 
(b) To generate data files for a single species. 

In the same directory as the GAUSSIAN files, type 'gauss2multi <GAUSSIAN 
_Name_File>' 

 
IMPORTANT: 

The conversion to MultiWell data files cannot be completely automated: 
Many of these files will probably require manual changes! Be careful! 

 
 

EXAMPLE CONFIGURATION FILE (gauss2multi.cfg) 
 
 KCAL 
 3 
 298.15  398  498 
 TOR 
 5 
 0.1  1.0 10. 100. 1000. 
 10.    400     900     50000. 
 1  A.log WELL 
 2  B.log  WELL 
 3  TS-A-B.log     TS 
 4  C.log  PROD 
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7. doloops, ansum, adensum, and sctst: non-Separable 
Vibrations 

For a brief introduction to non-separable anharmonic vibrations, see Technical Note #2. 
The first three programs, which are for computing sums and densities of states for non-

separable vibrations, are described elsewhere.6,48 All of them include the ability to include 
quantum and classical rotations in the sums and densities of states. Programs doloops and 
adensum also can include hindered internal rotations. Each program is particularly suited for 
specific applications. In particular, the number of atoms or vibrational modes strongly affects 
execution times. Note that "exact" refers to exact at the level of second order vibrational 
perturbation theory (VPT2). 

 
 ~Atoms ~Vibrations Accuracy Method 
doloops 3-4 3-6 exact direct count using 

nested DO-loops6 
adensum 4- >50 6- >150 approximate Wang-Landau 

algorithm6 ,49,50 
ansum 3-6 3-12 approximate Monte Carlo 

algorithm48 
 
The third program, sctst, is for computing rate constants by using the semi-classical 

transition state theory. 
 

NOTE. In second order vibrational perturbation theory (VPT2), the zero point energy includes 
contributions from the harmonic frequencies, the anharmonicities, and an additional term 
denoted ε0 (see Eq. 9 in Section 9.9).51,52 This term, which cancels-out in spectroscopy 
applications but must be included for thermochemistry and kinetics, is computed by electronic 
structure programs that employ VPT2 (e.g. GUSSIAN and CFOUR), but it is not computed by 
MultiWell. For ab initio kinetics calculations involving small molecules the term may be 
significant, but it is very small for molecules with small rotational constants. For high accuracy 
ab initio kinetics calculations (e.g. 7, E0 can be included manually by modifying the reaction 
critical energy.  
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7.1 Program doloops 
(For definitions of terms, see Technical Note #2.) 
This program computes exact counts of bound and quasi-bound states by using 

straightforward nested DO-loops, which step through all allowed quantum numbers and compute 
Ev for all states up to a high energy. The state energies are binned in energy grains specified by 
user (typically 10 cm-1). Sums and densities of states can then be computed using the combined 
Beyer-Swinhart11 and Stein-Rabinovitch10 algorithms (the BSSR algorithm). The number of 
nested DO-loops is equal to a number of degrees of freedom (DOF). The algorithm is very 
efficient for small molecules having 3-4 atoms, but becomes extremely slow for larger species.6 

Running doloops 
The executable (binary) program resides in the directory 

multiwell<version>/bin, where <version> is the version number (e.g. "2010.0") To 
execute the compiled program, enter the directory that contains the doloops data file 
("doloops.dat") and then type ~/multiwell<version>/bin/ doloops. Directory 
multiwell<version> is assumed to reside in your Home directory. The output file 
doloops.out is automatically placed in the directory that contains doloops.dat. A second 
output file <name>.dens, which is designed to be an input file for the MultiWell master 
equation code, is also generated, where <name> is the name of the chemical species (specified 
in doloops.dat). 

Data File Format 
(For definitions of terms, see Technical Note #2.) 

Line 1: Name (species name; ≤10 characters) 

Line 2: Title 1 (≤100 characters) 

Line 3: Title 2 (≤100 characters) 
 
Line 4: ns (number of vibrational modes), NY (number of Y matrix elements), NZ (number of Z 
matrix elements), WW (a keyword to designate frequencies as ωe or ω0) 
 WW = We for ω 
 WW = Wf for fundamental vibrations (0-1 transitions) 
 WW = W0 for ω0 [note: 0 is a zero] 

(The distinction between ω and ω0 is explained by eqs. (II,267) through (II,269) of Herzberg 53.  
The computer code carries out the conversion between them.) 

Lines 5+ (5 to 4+ns): wa(i) [i = 1 , ns] vibrational frequencies (cm-1) 

Line 6 (5+ns): KEYWORD for reading the X anharmonicity matrix: 
 = lower (for reading lower half of matrix, plus the diagonal) 
 = upper (for reading upper half of matrix, plus the diagonal) 

Lines 7+ (6+ns to 5+2ns): xa(k,j) anharmonicities (cm-1) in upper or lower halves (plus the 
diagonal)  of the ns×ns anharmonicity matrix. 
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Line 8 (6+2ns): Nsep (number of separable modes to be convoluted with the ns non-separable 
modes)  

Line 9 (7+2ns): input data for the separable modes (quantum rotors (1-D or 2-D), and/or 
particle in a box). Use the same input format as in DenSum (see the MultiWell User manual)  

Line 10 (8+2ns): Egrain1, imax1, Isize, Emax2, KEYWORD 
Egrain1 = energy grain (cm-1) 
imax1 = number of array elements in lower part of the Double Array (see MultiWell User 
Manual)  
Isize = total number elements in the Double Array. 
Emax2 = upper energy limit 

Notes 

1. Energies are relative to the zero point energy. 

NOTE. In second order vibrational perturbation theory (VPT2), the zero point energy includes 
contributions from the harmonic frequencies, the anharmonicities, and an additional term 
denoted ε0 (see Eq. 9 in Section 9.9).51,52 This term, which cancels-out in spectroscopy 
applications but must be included for thermochemistry and kinetics, is computed by electronic 
structure programs that employ VPT2 (e.g. GUSSIAN and CFOUR), but it is not computed by 
MultiWell. For ab initio kinetics calculations involving small molecules the term may be 
significant, but it is very small for molecules with small rotational constants. For high accuracy 
ab initio kinetics calculations (e.g. 7, E0 can be included manually by modifying the reaction 
critical energy.  
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7.2 Program adensum 
(For definitions of terms, see Technical Note #2.) 
Wang and Landau49,54 pioneered an efficient random walk algorithm in energy space to 

compute densities of states for use in classical statistical models. Their approach is based on the 
idea that a density-weighted Monte Carlo sampling of the energy states of the system will 
produce a flat histogram of samples in equally-spaced energy bins if the density of states 
function is exact, in the limit of an infinite number of trials. The algorithm is initiated with a trial 
density of states in every energy bin and the density-weighted Monte Carlo sampling begins. A 
histogram records every visit to an energy bin. The algorithm is designed to modify the relative 
density of states G(Ei) on every visit to an energy bin (at energy Ei) in such a way so that G(Ei) 
approaches exact proportionality with the true density of states after a large number of 
samples.49,54 The algorithm can be halted by monitoring the "flatness" of the histogram, or by 
limiting the number of Monte Carlo samples. Basire et al.50 adapted the Wang-Landau algorithm 
for computing quantum densities of states for fully coupled anharmonic systems using the 
perturbation theory expansion for vibrational energy. It is a powerful method. For a full 
description of the algorithm and notation, see the paper by Basire et al. 50 As one of their 
demonstrations, they computed the density of states for naphthalene, based on the fully-coupled 
X matrix reported by Cané et al.55 

We have modified the Basire et al. version50 of the Wang-Landau algorithm in several 
minor ways to meet the needs for the density of states in chemical kinetics and master equation 
applications. In our approach, we compute statistics for the histogram based only on energy bins 
that contain states. We do not use the "flatness" criterion for halting the algorithm, but instead 
use the number of Monte Carlo trials per energy bin, since that is the principal factor that 
controls the relative error (see below). We also apply the tests described above to ensure that 
selected states are bound or quasi-bound. 

We have automated the algorithm by choosing the probability of accepting a move 
(parameter p; see Basire et al. for notation) according to N, the number of DOF. As discussed by 
Basire et al., if p is too large, the Monte Carlo selection can sample the entire energy range 
rapidly, but there may be many wasted samples that fall out of range. On the other hand if p is 
too small, the entire energy range may not be sampled efficiently, and more trials will be needed. 
In this work, we adopt p =MIN(1/N, 0.25). This protocol is consistent with the values for p used 
by Basire et al.50 As discussed in a later section, our results show little sensitivity to the selection 
of p. 

The most important new modification we have made to the Basire et al. version50 of the 
Wang-landau algorithm is to introduce automatic normalization of the density of states. Recall 
that the Wang-Landau algorithm produces results that are proportional to the exact density of 
states. The un-normalized G(Ei) may be sufficient for many applications, but the absolute density 
of states ρ(Ei) is needed for calculating rate constants from statistical rate theories, for example. 
In our approach, the size of the energy bins (i.e. the energy grain size ∆E) is chosen small 
enough so that only one state, the lowest energy state (i.e. the zero point energy state), falls in the 
lowest energy bin. Since we know that only one state resides in the lowest energy bin, the 
density of states in lowest energy bin must be (∆E)-1, we then obtain the absolute density of 
states:  
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ρ Ei( ) = G Ei( )

G Ei = 0( )
1
ΔE

  

For vibrational states, it is easy to choose ∆E small enough so that only the zero point energy 
state falls within the lowest energy bin. For master equation and chemical kinetics applications, 
the typical energy grain is ∆E≤10 cm-1 and vibrational frequencies are typically much larger. If 
rotations were to be included with the vibrations, normalization can still be achieved easily by 
using one of the other methods described above to count the number of rotational states in the 
lowest energy grain and normalizing accordingly. 

Our modified version of the Wang-Landau algorithm49,54 draws heavily on that of Basire 
et al., 50 and is summarized elsewhere.6 

NOTE. In second order vibrational perturbation theory (VPT2), the zero point energy includes 
contributions from the harmonic frequencies, the anharmonicities, and an additional term 
denoted ε0 (see Eq. 9 in Section 9.9).51,52 This term, which cancels-out in spectroscopy 
applications but must be included for thermochemistry and kinetics, is computed by electronic 
structure programs that employ VPT2 (e.g. GUSSIAN and CFOUR), but it is not computed by 
MultiWell. For ab initio kinetics calculations involving small molecules the term may be 
significant, but it is very small for molecules with small rotational constants. For high accuracy 
ab initio kinetics calculations (e.g. 7, E0 can be included manually by modifying the reaction 
critical energy.  

 

Running adensum 
The executable (binary) program resides in the directory 

multiwell<version>/bin, where <version> is the version number (e.g. "2010.0") 
To execute the compiled program, enter the directory that contains the adensum data file 
("adensum.dat") and then type ~/multiwell<version>/bin/ adensum. Directory 
multiwell<version> is assumed to reside in your Home directory. The output file 
adensum.out is automatically placed in the directory that contains adensum.dat. A second 
output file <name>.dens, which is designed to be an input file for the MultiWell master 
equation code, is also generated, where <name> is the name of the chemical species (specified 
in adensum.dat). 

Adensum has been designed to run using a "checkpoint file", which is generated after 
the density of states of the fully coupled vibrations have been calculated, which is the most time-
consuming section. The following section convolutes the separable degrees of freedom, if any 
are specified. The separable degrees of freedom may include free or hindered rotors, harmonic 
vibrations, etc. In particular, the K-rotor and possibly other external rotational degrees of 
freedom may be specified. If desired, the densities of states may be recalculated using various 
combinations of separable degrees of freedom, but retaining the same set of fully coupled 
vibrations. Repetitive calculations like these can be restarted using the checkpoint file, which 
saves considerable computer time. 

Three output files are generated by adensum: adensum.out, <name>.dens, and  
<name>.qvb. The first file (adensum.out) is a standard output file, which summarizes all 
input and output. The second file (<name>.dens), which takes a chemical species name as part 
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of the file name, gives sums and densities of states, formatted as double arrays; it can be used as 
input for the MultiWell master equation code. By using this input file, master equation 
calculations can be carried out with densities of states computed by including the fully-coupled 
vibrations. The third file (<name>.qvb) is formatted as a supplementary input file for program 
Thermo; it tabulates the partition function and other thermodynamic properties of the coupled 
vibrational modes at a set of fixed temperatures from 50 K to >3000 K. Thermo can utilize 
these partition functions to compute and thermodynamics data and canonical rate constants. See 
Section 5.3 of this User Manual for a description of how the <name>.qvb file is used by 
Thermo. 

 

Data File Format 

(For definitions of terms, see Technical Note #9.) 

Line 1: Name (species name; ≤10 characters) 

Line 2: Title 1 (≤100 characters) 

Line 3: Title 2 (≤100 characters) 
 
Line 4: ns (number of vibrational modes), NY (number of Y matrix elements), NZ (number of Z 
matrix elements), WW (a keyword to designate frequencies as ωe or ω0) 
 WW = We for ω 
 WW = Wf for fundamental vibrations (0-1 transitions) 
 WW = W0 for ω0 [note: 0 is a zero] 

(The distinction between ω and ω0 is explained by eqs. (II,267) through (II,269) of Herzberg 53.  
The computer code carries out the conversion between them.) 

Lines 5+ (5 to 4+ns): wa(i) [i = 1 , ns] vibrational frequencies (cm-1) 

Line 6 (5+ns): KEYWORD for reading the X anharmonicity matrix: 
 = lower (for reading lower half of matrix, plus the diagonal) 
 = upper (for reading upper half of matrix, plus the diagonal) 

Lines 7+ (6+ns to 5+2ns): xa(k,j) anharmonicities (cm-1) in upper or lower halves (plus the 
diagonal)  of the ns×ns anharmonicity matrix. 

Line 8: Nsep , Vrot 
Nsep = number of separable modes to be convoluted with the ns non-separable modes)  
Vrot = KEYWORD for specifying units for internal and external rotations, except for 
hindered rotors of type hrd (see special instructions in the chapter on DenSum for type 
hrd)  

 'AMUA': for moments of inertia input with units of amu Å2. 
 'GMCM': for moments of inertia input with units of g cm2. 
 'CM-1': for rotational constant input with units of cm-1. 
 'MHZ': for rotational constant input with MHz. 
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 'GHZ': for rotational constant input with GHz. 
 (some combinations of upper/lower case are also accepted) 

Line 9: input data for the separable modes (classical or quantum free rotors, hindered rotors of 
several types, and Morse oscillators). Use the same input format for these degrees of freedom as 
used in DenSum (see the MultiWell User Manual)  

Line 10: Egrain1, imax1, Isize, Emax2, KEYWORD 
Egrain1 = energy grain (cm-1) 
imax1 = number of array elements in lower part of the Double Array (see MultiWell 
User Manual)  
Isize = total number elements in the Double Array. 
Emax2 = upper energy limit 
KEYWORD = controls number of stochastic trials: 

Fair: low statistical accuracy (102 trials per energy grain)  
Good: good statistical accuracy (103 trials per energy grain).  
Better: better statistical accuracy (104 trials per energy grain)  
Best: best statistical accuracy (105 trials per energy grain)  
Extra: best statistical accuracy (106 trials per energy grain, but no more than 

2×109 total trials for all energy grains) 

Line 11: chekpoint 
If chekpoint = "chekstart", then the new calculation starts by reading the pre-
existing checkpoint file. Otherwise, the full calculation if is carried out. Line 10 must be 
identical to the data file used to create the pre-existing checkpoint file.  

 

Notes 

1. Energies are relative to the zero point energy. 
2. Be careful when using Gaussian! The Gaussian log file has two sections related to 

vibrations. The first section is for the usual vibrational analysis to obtain harmonic 
frequencies. These frequencies are listed from lowest to highest. The second section is for 
anharmonicities. In the second section, the harmonic frequencies are listed again (along 
with the fundamental frequencies), but the ordering may not be the same as in the first 
section. The input for the codes distributed in MultiWell will accept the frequencies in 
any order, but the ordering of the harmonic frequencies must be consistent with the 
ordering used for the anharmonicities. For consistency, the Gaussian user must be sure to 
use the ordering of the harmonic frequencies as listed in association with the 
anharmonicities in the Gaussian log file. 
 

  



 

- 64 - 

7.3 Program ansum 
(For definitions of terms, see Technical Note #2.) 
This program uses an efficient multidimensional Monte Carlo integration method to 

compute sums of vibrational states for non-separable systems48. It uses the full second order 
(pair-wise) X matrix, which can be obtained (in some cases) from spectroscopic data, or from 
electronic structure calculations (e.g. GAUSSIAN56 and CFour57).  

To reduce execution time, Ganh(E) is usually calculated at fairly large energy intervals, 
even though a much smaller energy grain size may be desired. Since the density of states is the 
derivative of the sum of states (ρ(E) = dG/dE), it is possible to obtain the density of states by 
fitting the computed Ganh(E) to a suitable function and then taking the derivative. In this 
implementation, the sum of states is assumed to be described by an exponential function, which 
is fitted to each pair of adjacent Ganh(E) values, and ρ(E) is obtained from the derivative. 

Running ansum 
The executable (binary) program resides in the directory 

multiwell<version>/bin, where <version> is the version number (e.g. "2010.0") 
To execute the compiled program, enter the directory that contains the ansum data file 
("ansum.dat") and then type ~/multiwell<version>/bin/ ansum. Directory 
multiwell<version> is assumed to reside in your Home directory. The output file 
ansum.out is automatically placed in the directory that contains ansum.dat.  

 

Data File Format 
(For definitions of terms, see Technical Note #2.) 

Line 1: Title 1 (≤100 characters) 

Line 2: Title 2 (≤100 characters) 
 
Line 3: ns (number of vibrational modes), WW (a keyword to designate frequencies as ωe or ω0) 
 WW = We for ω 
 WW = Wf for fundamental vibrations (0-1 transitions) 
 WW = W0 for ω0 [note: 0 is a zero] 

(The distinction between ω and ω0 is explained by eqs. (II,267) through (II,269) of 
Herzberg 53. The computer code carries out the conversion between them.) 

Line 4: wa(i) [i = 1 , ns] vibrational frequencies (cm-1) 

Line 5: KEYWORD for reading the anharmonicity matrix: 
 = lower (for reading lower half of matrix, plus the diagonal) 
 = upper (for reading upper half of matrix, plus the diagonal) 

Lines 6 to ns+5: xa(k,j) anharmonicities (cm-1) in upper or lower halves (plus the diagonal)  
of the ns×ns anharmonicity matrix. 

Line ns+6: J ,  BK 
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 J   = total angular momentum quantum number (for symmetric top) 
 BK = rotational constant (cm-1) for the K-rotor of a symmetric top.  

For a symmetric top with rotational constants A, B=C, the rotational constant for the K-
rotor is BK = A-B. 

Line ns+7: Estart, Emax, Estep,  Beta,  TrialMax,  Percent 
Estart = initial energy (cm-1) 
Emax = maximum energy (cm-1) 
Estep = energy difference between consecutive calculations (cm-1) 
Beta = multiplier (≥1) to establish sampling boundary 
TrialMax = maximum number of Monte Carlo samples 
Percent = desired relative error in Sum of States 

Notes 

1. Beta = 1.01 usually works reasonably well; smaller values greater than unity (e.g. 1.001) 
may be needed to improve numerical efficiency for large molecules. Larger values should also 
be tested, although the numerical efficiency will be reduced. 

2. Calculations are terminated by either achieving Percent, or by reaching TrialMax, 
depending on which is reached first. 

3. To achieve small relative errors (Percent) requires large numbers (TrialMax) of Monte 
Carlo samples. The actual numbers required depend on the number of vibrational modes (ns) 
and other factors. Before carrying out a long, time-consuming run, it is recommended that a 
quick preliminary run be carried out using Percent = 10 (for example). 

4. Because the densities of states are calculated by finite differences, the results are more 
accurate when small energy steps (small Estep) are used. Alternatively, the sums of states 
can be fitted by least squares to some differentiable function which can be differentiated to 
obtain the densities of states. 

5. Energies are relative to the zero point energy. 

6. The K-rotor quantum states are constrained to the range from -J to +J, which is proper for 
rigid rotors.18 

NOTE. In second order vibrational perturbation theory (VPT2), the zero point energy includes 
contributions from the harmonic frequencies, the anharmonicities, and an additional term 
denoted ε0 (see Eq. 9 in Section 9.9).51,52 This term, which cancels-out in spectroscopy 
applications but must be included for thermochemistry and kinetics, is computed by electronic 
structure programs that employ VPT2 (e.g. GUSSIAN and CFOUR), but it is not computed by 
MultiWell. For ab initio kinetics calculations involving small molecules the term may be 
significant, but it is very small for molecules with small rotational constants. For high accuracy 
ab initio kinetics calculations (e.g. Ref. 7, ε0 can be included manually by modifying the reaction 
critical energy.  
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Example Data File 
 
CH2Br [A. Baldacci et al., JPCA 113, 6083-6090 (2009)] 
Fundamentals from experiments, Xij from CCSD(T)/cc-pVTZ 
 
9 , 'Wf' 
 
3001.044 
2243.802 
1424.944 
1225.21 
768.76 
595.0 
3052.96 
1252.55 
930.281 
upper 
-28.4   -2.5  -8.1   -3.6   -0.9  +1.4  -117.6  -10.8  -7.0 
-32.0   -3.4  -3.5   -3.3    0.0  -0.2    -9.3   +2.3 
 -6.7   -2.5  -2.2   -0.6  -22.1  -2.8    -7.8  
 -4.4   -3.6  -1.6  -10.2   -6.2  -0.1  
 -1.4   -4.5  -1.3   -4.4   +3.3 
 -3.5   +2.2  -1.1   -6.2 
-33.0  -12.2  -6.4 
 -1.9   -6.7 
 -0.6 
 
0 , 3.674 
 
5000.  50000. , 5000. , 1.001 , 1.e+08 , 1.0 
 

Example Output File 
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
     @@ 
     @        PROGRAM ANSUM v.1.02   [May 2009]    @ 
     @       by John R. Barker   @ 
     @@ 
     @      Sums of states for non-separable systems        @ 
     @@ 
     @  [J.R. Barker, J.Phys.Chem., 91, 3849-3854 (1987)]   @ 
     @@ 
     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
 
 
 
 Fri May 22 10:13:02 2009 
 Elapsed User Time:        0.000 sec 
 Total Elapsed Time:       0.000 min 
 
CH2Br [A. Baldacci et al., JPCA 113, 6083-6090 (2009)]  
Fundamentals from experiments, Xij from CCSD(T)/cc-pVTZ 
 
 
 
 
  9 Vibrational Frequencies (cm-1) 
  We; E = We*(v+1/2) +...; Wo: E = W0*v +...;  0<->1 fund. 
  De: BDE for Separable Morse oscillator [0.0 if non-Morse] 
 
  No.     WeWo      0-1_Fund.   De(cm-1) 
    1   3132.394   3029.444   3001.044    80788.1 
    2   2317.752   2275.802   2243.802    40463.1 
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    3   1463.094   1431.644   1424.944    76477.8 
    4   1249.660   1229.610   1225.210    85905.7 
    5    780.010    770.160    768.760   105919.0 
    6    607.200    598.500    595.000    25585.9 
    7   3202.860   3085.960   3052.960    72145.1 
    8   1283.100   1254.450   1252.550   207058.5 
    9    945.781    930.881    930.281   361058.1 
 
(Anharmonic) Zero point energy (cm-1) =   7397.076 
 
 
Anharmonicity Matrix (cm-1) 
 
123456789 
  1   -28.400    -2.500    -8.100    -3.600    -0.900     1.400  -117.600   -10.800    -7.000 
  2    -2.500   -32.000    -3.400    -3.500    -3.300     0.000    -0.200    -9.300     2.300 
  3    -8.100    -3.400    -6.700    -2.500    -2.200    -0.600   -22.100    -2.800    -7.800 
  4    -3.600    -3.500    -2.500    -4.400    -3.600    -1.600   -10.200    -6.200    -0.100 
  5    -0.900    -3.300    -2.200    -3.600    -1.400    -4.500    -1.300    -4.400     3.300 
  6     1.400     0.000    -0.600    -1.600    -4.500    -3.500     2.200    -1.100    -6.200 
  7  -117.600    -0.200   -22.100   -10.200    -1.300     2.200   -33.000   -12.200    -6.400 
  8   -10.800    -9.300    -2.800    -6.200    -4.400    -1.100   -12.200    -1.900    -6.700 
  9    -7.000     2.300    -7.800    -0.100     3.300    -6.200    -6.400    -6.700    -0.600 
 
Angular momentum J =   0 
K-rotor rotational constant (cm-1) Bk = 3.674E+00 
 
Beta =  1.0010 
 
Maximum number of Monte Carlo samples = 1.0E+08 
 
 
 
OUTPUT (without densities) 
 Energy(cm-1)  Ntrials   Efficiency    Sums     %_Error 
 
    5000.0   8.142E+05    9.98E-01    4.610E+02    1.00 
   10000.0   3.660E+06    9.93E-01    1.521E+04    1.00 
   15000.0   9.107E+06    9.86E-01    1.882E+05    1.00 
   20000.0   1.218E+07    9.81E-01    1.360E+06    1.00 
   25000.0   1.511E+07    9.70E-01    6.753E+06    1.00 
   30000.0   2.139E+07    9.65E-01    2.788E+07    1.00 
   35000.0   3.270E+07    9.60E-01    1.018E+08    1.00 
   40000.0   3.524E+07    9.53E-01    3.125E+08    1.00 
   45000.0   3.330E+07    9.45E-01    8.479E+08    1.00 
   50000.0   3.475E+07    9.40E-01    2.229E+09    1.00 
 
 Fri May 22 10:47:46 2009 
 Elapsed User Time:     2076.610 sec 
 Total Elapsed Time:      34.639 min 
 
 
 
OUTPUT (including densities) 
 Energy(cm-1)  Ntrials   Efficiency    Sums     %_Error    Densities 
 
    5000.0   8.142E+05    9.98E-01    4.610E+02    1.00    4.439E-01 
   10000.0   3.660E+06    9.93E-01    1.521E+04    1.00    9.141E+00 
   15000.0   9.107E+06    9.86E-01    1.882E+05    1.00    8.458E+01 
   20000.0   1.218E+07    9.81E-01    1.360E+06    1.00    4.869E+02 
   25000.0   1.511E+07    9.70E-01    6.753E+06    1.00    2.040E+03 
   30000.0   2.139E+07    9.65E-01    2.788E+07    1.00    7.565E+03 
   35000.0   3.270E+07    9.60E-01    1.018E+08    1.00    2.461E+04 
   40000.0   3.524E+07    9.53E-01    3.125E+08    1.00    6.623E+04 
   45000.0   3.330E+07    9.45E-01    8.479E+08    1.00    1.666E+05 
   50000.0   3.475E+07    9.40E-01    2.229E+09    1.00    4.307E+05 
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7.4 Program sctst 
This program is a new implementation7 of the semi-classical transition state theory 

(SCTST) formulated by W. H. Miller and coworkers.12,13,15,58 Our implementation is based on the 
Wang and Landau algorithm49 and the density of states algorithm of Basire et al.,50 as refined by 
Nguyen and Barker.6 In particular, the code is an extension of program adensum (see above). 
See section 9.9 of this User Manual for an outline of the method. The literature references should 
be consulted for further details about the theory, its usefulness, and applications. The literature 
should be cited as described at the Preface of this User Manual. 

The SCTST is a powerful method, since it can be used for computing both thermal (i.e. 
canonical k(T)) and microcanonical (i.e. k(E)) rate constants, which are particularly useful for 
master equation calculations. Unlike ordinary transition state theory, the SCTST is fully non-
separable: all of the degrees of freedom may be coupled and it is not necessary to assume that the 
reaction coordinate is separable from the others. It also accounts naturally for zero point energy 
and for quantum mechanical tunneling along the curved reaction path in hyperdimensional space. 
In test cases, it is highly accurate. 

The input is similar to that for program adensum, but it also includes the imaginary 
frequency and the anharmonicity coefficients associated with the reaction coordinate. The 
imaginary frequency and the off-diagonal anharmonicity coefficients associated with the reaction 
coordinate are pure imaginary numbers; the diagonal anharmonicity for the reaction coordinate is 
a pure real number. These facts affect how the parameters are specified in the input data file 
sctst.dat. 

The output files are analogous to the output files from programs adensum and densum. 
The general output file sctst.out summarizes the input and gives "sums" and "densities" of 
states for the full energy range specified. These "sums" and "densities" actually correspond to the 
cumulative reaction probability12,13,15,58 (CRP) and the corresponding energy derivative, which 
are equal to the sums and densities in the absence of quantum tunneling. The general output file 
also gives the thermal partition function (excluding the translations) for the transition state at a 
set of 100 fixed temperatures (25 K to 3383 K). The second output files takes the name of the 
transition state with ".dens" added: <name>.dens, just as in programs densum and 
adensum. These files are formatted for use by the MultiWell master equation code. In addition, 
a file <name>.qcrp is generated for use by program Thermo to calculate canonical rate 
constants (see Section 5.3 of this User Manual for a description of how the file is used by 
Thermo). 

Running sctst 
The executable (binary) program resides in the directory 

multiwell<version>/bin, where <version> is the version number (e.g. "2010.0") 
To execute the compiled program, enter the directory that contains the sctst data file 
("sctst.dat") and then type ~/multiwell<version>/bin/sctst. Directory 
multiwell<version> is assumed to reside in your Home directory. The output file 
sctst.out is automatically placed in the directory that contains sctst.dat. A second 
output file <name>.dens, which is designed to be an input file for the MultiWell master 
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equation code, is also generated, where <name> is the name of the transition state specified in 
sctst.dat. 

Like adensum, sctst has been designed to run using a "checkpoint file", which is 
generated after the density of states of the fully coupled vibrations have been calculated, which is 
the most time-consuming part of the calculation. The next part of the calculation convolutes the 
separable degrees of freedom, if any are specified. The separable degrees of freedom may 
include free or hindered rotors, harmonic vibrations, etc. In particular, the 1-D external rotation 
(the  K-rotor) and possibly also the 2-D external rotational degrees of freedom may be specified, 
depending on the application. If desired, the densities of states may be recalculated using various 
combinations of separable degrees of freedom, but retaining the same set of fully coupled 
vibrations. Repetitive calculations like these can be restarted using the checkpoint file, which 
saves considerable computer time. 

Another reason for running repetitive calculations by starting with the checkpoint file is 
because whenever the reaction threshold energy is changed, the SCTST requires that the density 
of states of the transition state and the cumulative reaction probability be recalculated.7 Adjusting 
reaction barriers may require multiple repetitive calculations, and restarting by using the 
checkpoint file will reduce the computer time by an order of magnitude. 

Four output files are generated by sctst: sctst.out, <name>.crp, <name>.chk, 
and  <name>.qcrp. The first file (sctst.out) is a standard output file, which summarizes all 
input and output. The second file (<name>.chk), which takes a chemical species name as part 
of the file name, is the checkpoint file, which is an important time-saving measure for 
subsequent runs using the same vibrational parameters, as described in the preceding paragraph. 
The third file (<name>.crp), tabulates the cumulative reaction probability (CRP) and its 
energy derivative (analogous to sums and densities of states), formatted as double arrays; it is 
formatted for use as input for the MultiWell master equation code. By using this input file, 
master equation calculations can be carried out with microcanonical rate constants (i.e. k(E)) 
computed by including the fully-coupled vibrations. The fourth file (<name>.qcrp) is 
formatted as a supplementary input file for program Thermo; it tabulates the partition function 
for the CRP and other thermodynamic properties of the coupled vibrational modes at a set of 
fixed temperatures from 50 K to >3000 K. Thermo can utilize these partition functions to 
compute thermal rate constants using the SCTST. See Section 5.3 of this User Manual for a 
description.  

 

Data File Format 

(For definitions of terms, see Technical Note #9 and Nguyen et al.7 ) 

Line 1: Name (transition state name; ≤10 characters) 

Line 2: Title 1 (≤100 characters) 

Line 3: Title 2 (≤100 characters) 
 
Line 4: ns (number of orthogonal vibrational modes, not including the reaction coordinate), NY 
(number of Y matrix elements), NZ (number of Z matrix elements), WW (a keyword to designate 
frequencies as ωe or ω0) 
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 WW = We for ω 
 WW = Wf for fundamental vibrations (0-1 transitions) 
 WW = W0 for ω0 [note: 0 is a zero] 

(The distinction between ω and ω0 is explained by eqs. (II,267) through (II,269) of Herzberg 53.  
The computer code carries out the conversion between them.) 

Lines 5: wa(i) [i = 1 , ns] vibrational frequencies (cm-1) of the orthogonal vibrations (i.e. not 
including the reaction coordinate) 

Line 6: KEYWORD for reading the X anharmonicity matrix (not including the reaction 
coordinate). The keyword must start at the beginning of the line (i.e. it cannot be 
preceded by blank characters): 

 = lower (for reading lower half of matrix, plus the diagonal) 
 = upper (for reading upper half of matrix, plus the diagonal) 

Lines 7: xa(k,j) anharmonicities (cm-1) in upper or lower halves (plus the diagonal)  of the 
ns×ns anharmonicity matrix. 

Line 8: Nsep , Vrot 
Nsep = number of active separable modes (as in Line 5 of Densum) to be convoluted 
with the ns non-separable modes entered above)  
Vrot = KEYWORD for specifying units for internal and external rotations, except for 
hindered rotors of type hrd (see special instructions in the chapter on DenSum for type 
hrd)  

Vrot Keywords: 
 'AMUA': for moments of inertia input with units of amu Å2. 
 'GMCM': for moments of inertia input with units of g cm2. 
 'CM-1': for rotational constant input with units of cm-1. 
 'MHZ': for rotational constant input with MHz. 
 'GHZ': for rotational constant input with GHz. 
 (some combinations of upper/lower case are also accepted) 

Line 9: input data for the separable modes. These may include classical or quantum free rotors, 
hindered rotors of several types, and Morse oscillators. Use the same input format for these types 
as used in DenSum (see the MultiWell User Manual)  

Line 10: Egrain1, imax1, Isize, Emax2, KEYWORD1 
(see Chapter 10 of this User Manual for guidelines in setting these parameters.) 
Egrain1 = energy grain (cm-1) 
imax1 = number of array elements in lower part of the Double Array  
Isize = total number elements in the Double Array. 
Emax2 = upper energy limit (cm-1), measured from the zero point energy of the reactant 

when the reaction is written in the exothermic direction. 
KEYWORD1 = controls number of stochastic trials: 

Fair: low statistical accuracy (102 trials per energy grain)  
Good: good statistical accuracy (103 trials per energy grain).  
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Better: better statistical accuracy (104 trials per energy grain)  
Best: best statistical accuracy (105 trials per energy grain)  
Extra: best statistical accuracy (106 trials per energy grain, but no more than 

2×109 total trials for all energy grains) 

Line 11: chekpoint 
If chekpoint = "chekstart", then the new calculation starts by reading the pre-
existing checkpoint file. Otherwise, the full calculation if is carried out. All data up to and 
including Line 10 must be identical to the data file used to create the pre-existing 
checkpoint file in the first place.  

Line 12: KEYWORD2 
KEYWORD2 = controls number of samples for the semi-classical calculation (typically the 
same as KEYWORD1). The samples are used to compute average quantities employed by 
the theory. 

Fair: low accuracy (102 samples per energy grain)  
Good: good accuracy (103 samples per energy grain).  
Better: better accuracy (104 samples per energy grain)  
Best: best accuracy (105 samples per energy grain)  
Extra: best accuracy (106 samples per energy grain, but no more than 2×109 total 

samples for all energy grains) 

Line 13: Vf , Vr , Eunits 
Barrier heights in forward (Vf) and reverse (Vr) directions, and their energy units 
(Eunits: kcal, kjou, or cm-1) 

Line 14 : vimag, Xff 
Imaginary frequency and the diagonal anharmonicity coefficient for the reaction 
coordinate (units of cm-1) 

Line 15: Xkf 
Off-diagonal anharmonicity coefficients (units of cm-1) multiplied by i = (-1)1/2: ns of 
them, in order. Since the Xk,F coefficients are pure imaginary, they can be written 

   
Xk ,F = i Xk ,F , where 

   
Xk ,F is a real number. The quantities to be input are 

   
i ⋅ Xk ,F = i ⋅ i Xk ,F = − Xk ,F , which is in the same format as GAUSSIAN output. In 

contrast, CFOUR output gives Xk,F expressed as 
   
Xk ,F followed by the symbol "i", i.e. "

   
Xk ,F i". These conventions are equivalent, but it is easy to make a sign error. Be 

careful! 

Notes 

1. Energies are relative to the zero point energy. 

2. In second order vibrational perturbation theory (VPT2), the zero point energy (ZPE) includes 
contributions from the harmonic frequencies, the anharmonicities, but it does NOT include the 
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harmonic imaginary frequency or any of the anharmonicity coefficients involving the imaginary 
frequency. The ZPE also includes an additional term denoted E0 (see Eq. 9 in Section 9.9)51,52 
which cancels-out in spectroscopy applications but must be included for thermochemistry and 
kinetics; it is computed by electronic structure programs that employ VPT2 (e.g. GUSSIAN and 
CFOUR), and is not computed by MultiWell itself. For ab initio kinetics calculations involving 
small molecules the term may be significant, but it is very small for molecules with small 
rotational constants. For high accuracy ab initio kinetics calculations (e.g. Ref. 7, E0 can be 
included manually by modifying the reaction critical energy.  

3. Be careful when using Gaussian! The Gaussian log file has two sections related to vibrations. 
The first section is for the usual vibrational analysis to obtain harmonic frequencies. These 
frequencies are listed from lowest to highest. The second section is for anharmonicities. In the 
second section, the harmonic frequencies are listed again (along with the fundamental 
frequencies), but the ordering may not be the same as in the first section. The input for the codes 
distributed in MultiWell will accept the frequencies in any order, but the ordering of the 
harmonic frequencies must be consistent with the ordering used for the anharmonicities. For 
consistency, the Gaussian user must be sure to use the ordering of the harmonic frequencies as 
listed in association with the anharmonicities in the Gaussian log file.  
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8. lamm: Effective mass for large amplitude motion 
 
Program Author: Thanh Lam Nguyen  
Contact: nguyenlt@umich.edu, Tel: (734) 936-0895 
     

8.1 Introduction 
This program is a tool for obtaining the effective mass (as a function of angle or distance) 

for large amplitude motions, such as internal rotation. The output is used as part of the input data 
file needed for computing sums and densities of states (using program DenSum) and partition 
functions (program Thermo). 

Program lamm uses the ro-vibrational G matrix-based algorithm described in the papers 
of Harthcock et al.59,60 and others to compute the effective reduced mass for one-dimensional 
torsions and other large amplitude motions, which are assumed to be separable from the other 
molecular degrees of freedom. 

Molecular geometries can be computed at discrete values of χ by using any of the many 
available quantum chemistry codes, such as Gaussian,56 Molpro,61 CFour,57 etc. Program lamm 
is intended to help users compute the torsion rotational constant Bhr(χ) and the potential energy 
V(χ), based on the output from the quantum chemistry program. 

 For hindered internal rotation, lamm employs Cartesian coordinates obtained from 
quantum chemical calculations carried out as a function of the dihedral angle χ (0≤χ<2π). The 
output of lamm consists of the torsion rotational constant function Bhr(χ) (or the corresponding 
moment of inertia function I(χ)) tabulated as a function of χ. The potential energy can also be 
obtained from the quantum chemistry calculations and expressed as a function of χ. These 
functions must then be fitted by the user to any one of the several truncated Fourier series that 
are recognized by DenSum and Thermo (see the MultiWell User Manual). The Fourier 
coefficients are used by programs DenSum and Thermo to solve the Schrödinger equation for 
the energy eigenstates (see Section 9.8), which are needed to compute densities of states and 
partition functions, respectively. 

A script is provided to assist users in extracting the required information from Gaussian 
output files (see Section 8.7). 

8.2 Compiling and Running lamm 
The source directory for lamm resides in the MultiWell src directory. The program is 

compiled on Linux by entering the MultiWell directory and typing “make” (omit the quotation 
marks), followed by a carriage return. The executable file is stored in the MultiWell bin 
directory. The default compiler is gfortran. The compiler can be changed by revising lines in 
file src/lamm/Makefile. To remove old object files and executables, enter directory 
src/lamm and type “make clean”, followed by a carriage return. 

To execute the compiled program, enter the directory that contains the lamm data file 
(“lamm.dat”) and then type ~/multiwell-<version>/bin/lamm, where <version> 
refers to the multiwell version number (e.g. "2010.0"). This command executes the binary 
executable file. The output file (“lamm.out”) is automatically placed in the directory that 
contains lamm.dat. 
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8.3 Notes and Limits 
For the current version of the lamm program, Cartesian coordinates of optimized 

geometries must be obtained by constrained optimizations. When using Gaussian, the keyword 
“NOSYM” and/or OPT=”Z-Matrix”, or the equivalent must be specified.  

The lamm program does not automatically identify the molecular symmetry; it always 
assumes that the molecule has no symmetry (C1 symmetry). Therefore the effective reduced 
moment of inertia will be computed only for the number of optimized geometries that are input. 

Since the derivatives of the nuclear positions with respect to the torsional coordinate are 
computed by central finite differences, a fairly small torsional angle step-size must be used in 
order to achieve numerical accuracy. In our experience, a step-size of ≤10° is a good choice for 
most purposes.  

In addition to torsional motions, the lamm program can be used for computing the 
effective mass for other separable large-amplitude vibrational motions. Specific implementations 
will be added in the future.  

Users may be interested in program I_Eckart, which was coded in MATLAB by Wong, 
Thom and Field 62. We would like to thank Dr. Wong and Prof. Field for useful discussions and 
for providing a copy of their program, which we used for benchmarks. 

 

8.4 Data File Format 

Line 1: Name of molecule (≤ 100 characters) 

Line 2: Title (≤ 100 characters) 

Line 3: Natom (number of atoms in molecule) 

Line 4: Amin (lower limit of torsion angle in degrees), M (number of optimized geometries), 
DELA (step-size of torsion angle in degrees). 

Line 5+ (lines 5 to 4 + N): list of atomic masses (in amu) 

Line 6+ (lines 5 + N to 4 + N + N*M): list of Cartesian coordinates (in Angstroms) for M 
optimized geometries as a function of the torsion dihedral angle. 

Line 7 (lines 5 + N + N*M): comment line (≤100 characters) 

Line 8+ (lines 6 + N + N*M to 5 + N + N*M + M): list of torsional angle (in degrees) and 
relative energies (in cm-1). 
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8.5 Example Data File 
H2O2 
Calculated at 6-311G** level of theory       
 
4      ! Number of atoms in the molecule 
 
0, 36, 10       ! Minimum angle, No. of optimized geometries and Step-size 
(in degrees) 
 
1.     ! list of atomic mass (in amu) 
16. 
16. 
1. 
 
0.000000 0.000000 0.000000 !list of X, Y, Z cartesian coordinate 
0.000000 0.000000 0.966404 
1.412522 0.000000 1.340839 
1.891238 0.000000 0.501335 
   
0.000000 0.000000 0.000000 
0.000000 0.000000 0.966493 
1.412776 0.000000 1.339296 
1.886024 0.162275 0.512367 
And so on .... 
 

8.6 Example Output: 
H2O2       
Calculated at 6-311G** level of theory         
 
WARNING: The zero of the relative energy is arbitrary minimum   
INDEX    ANG(DEG)    ANG(RAD)      E(cm-1)      I(amu.A**2)   B(cm-1) 
     10.0       0.000000      2980.5       0.387       43.6 
     2        10.0       0.174533      2913.6       0.390       43.3 
     3        20.0       0.349066      2720.4       0.393       42.9 
     4        30.0       0.523599      2421.2       0.396       42.5 
     5        40.0       0.698132      2047.2       0.400       42.2 
     6        50.0       0.872665      1635.9       0.403       41.9 
     7        60.0       1.047198      1224.6       0.405       41.6 
     8        70.0       1.221730       846.6       0.407       41.4 
     9        80.0       1.396263       527.1       0.410       41.2 
    10        90.0       1.570796       282.2       0.412       40.9 
    11       100.0       1.745329       116.9       0.415       40.6 
    12       110.0       1.919862        27.0       0.418       40.4 
    13       120.0       2.0943950.0       0.420       40.2 
    14       130.0       2.268928        19.3       0.421       40.0 
    15       140.0       2.443461        65.6       0.423       39.9 
    16       150.0       2.617994       122.1       0.423       39.8 
    17       160.0       2.792527       173.9       0.423       39.8 
    18       170.0       2.967060       209.5       0.423       39.8 
    19       180.0       3.141593       222.3       0.424       39.8 
    20       190.0       3.316126       209.5       0.423       39.8 
    21       200.0       3.490659       173.9       0.423       39.8 
    22       210.0       3.665191       122.1       0.423       39.8 
    23       220.0       3.839724        65.6       0.423       39.9 
    24       230.0       4.014257        19.3       0.421       40.0 



 

- 76 - 

    25       240.0       4.1887900.0       0.420       40.2 
    26       250.0       4.363323        27.0       0.418       40.4 
    27       260.0       4.537856       116.9       0.415       40.6 
    28       270.0       4.712389       282.2       0.412       40.9 
    29       280.0       4.886922       527.1       0.410       41.2 
    30       290.0       5.061455       846.6       0.407       41.4 
    31       300.0       5.235988      1224.6       0.405       41.6 
    32       310.0       5.410521      1635.9       0.403       41.9 
    33       320.0       5.585054      2047.2       0.400       42.2 
    34       330.0       5.759587      2421.2       0.396       42.5 
    35       340.0       5.934119      2720.4       0.393       42.9 
    36       350.0       6.108652      2913.6       0.390       43.3 
    37       360.0       6.283185      2980.5       0.387       43.6 
 

8.7 gauss2lamm: A script for generating lamm.dat 
The shell script gauss2lamm.sh is designed to create data files for program lamm 

(see Chapter 8), which computes effective mass for large amplitude motions, such as hindered 
internal rotation. The script is located in directory multiwell-<version>/bin, where 
<version> refers to the version number (e.g. "2010.0"). This script reads the input 
orientations or Z-matrix of optimized geometries and corresponding energies as a function of the 
appropriate coordinate (i.e. the torsion dihedral angle) from "____.log" or "____.out" 
output files produced by GAUSSIAN-0347 or GAUSSIAN-0956 software.  

To execute the script, enter the directory that contains the Gaussian output file and then 
type ~/multiwell-<version>/bin/gauss2lamm.sh. This command goes to the 
directory multiwell-<version>/bin (which is assumed to reside in your Home directory) 
and executes the script file gauss2lamm.sh, which stored there. 

The script generates lamm.dat in the Gaussian output file directory.  
The script prompts the user to input the Gaussian output file name, number of atoms in 

the molecule and minimum angle, no. of points and stepsize (in degrees) used in the calculation. 
First it verifies whether the user has used the keyword “NOSYM and/or Z-Matrix” in Gaussian 
output. If the keyword is found the script writes lamm.dat containing geometry and energy 
(in cm-1) information. The energy is tabulated as a function of angle (in degrees). The zero of 
relative energy is arbitrary minimum. If the keyword is not found in the Gaussian output, the 
script prompts the user to redo the Gaussian calculation using the keyword “NOSYM and/or Z-
Matrix”. 

It is important to note that the lamm.dat file created automatically from Gaussian 
output needs manual changes. Line 5+ (lines 5 to 4+N) in the lamm.dat created using the 
script is atomic number, where N is number of atoms in the molecule. This has to be replaced 
with corresponding atomic masses (amu units) for subsequent use by program lamm.     

 
An example Gaussian output file lamm.log is available in the examples directory and 

procedure to execute gauss2lamm is shown below. 
   
$ ./../bin/gauss2lamm.sh 
 
Enter Gaussian Output Filename 
lamm.log 
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Keyword NOSYM found in the output 
 
Enter total number of atoms in the molecule 
5 
 
Enter MIN angle, No. of Points and Stepsize in degrees used 

in the calculation 
0 36 10 
 
Proceeding to collect data from lamm.log 
 
Lowest energy in the surface scan: -740.457504043 hartrees 
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9. Technical Notes 

9.1 Conversion Factors (Rotational Data) 
Moment of Inertia (I): 
 

I(amu Å2) = I(g cm2) / 1.66054×10−40 

I(amu*Å2) = 16.85763 / B(cm-1) 
I(amu*Å2) = 5.0538×105 / B(MHz) 
I(amu*Å2) = 5.0538×102 / B(GHz) 

 
Rotational Constant 

B(cm-1) = B(Hz) / 2.99793×1010  
B(cm-1) = B(MHz) / 2.99793×104  
B(cm-1) = B(GHz) / 2.99793×101  
 

9.2 Anharmonic Vibrations 

Separable Anharmonic Vibrations 
As described by Herzberg,53 ω (= ν/c, where ν is the harmonic frequency and c is the 

speed of light) is used in the following expression for the vibrational energy, where s is the 
number of separable oscillators, the vibrational energy Ev is expressed in units of cm-1 (relative 
to the zero point energy Ez), and the other symbols have their usual meanings: 
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where the zero point energy is given by  
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In DenSum and Thermo, vibrational anharmonicities can be entered directly for each 
independent vibration. The energy of each oscillator is computed as 

 
Evib = WE*(v+1/2) + ANH*(v+1/2)*(v+1/2), v=0,1,2,3,... 
 

where parameter WE and ANH are the harmonic frequency and anharmonicity, respectively 
(both expressed in cm-1 units). For a Morse oscillator, ANH < 0 for this convention. DenSum and 
Thermo assume separable degrees of freedom, where inter-mode couplings are neglected. Thus 
they can only consider the diagonal elements of the Xij anharmonicity coefficient matrix. Thus 
parameter ANH is identified with the diagonal Xii element. 



 

- 79 - 

Because Densum and Thermo are limited to separable modes, various choices can be 
made, depending on the information that is available. Sometimes the Xij anharmonicity 
coefficients are available from experiments. They can also be computed as standard options by 
electronic structure codes, although they are expensive to calculate. They are computed from a 
perturbation theory treatment based on higher derivatives of the potential energy surface at the 
equilibrium geometry. Thus they are closely related to the computed harmonic frequencies, 
which are based on the 2nd derivatives of the same potential energy surface. 

Possible Choices (in decreasing order of preference) 

1. For densities and sums of states, treat the vibrations as non-separable. Use program 
adensum instead of DenSum. See the next section. 

2. If the fundamental (i.e. "observed") frequency and the full (or diagonal) Xij matrix are 
known, one should use the fundamental frequency as "OBS" and the Xii diagonal term as 
ANH. 

3. If the harmonic frequency and the full Xij matrix are known, then one should first 
compute the fundamental frequency and then use Choice #1. 

4. If the harmonic frequency and the diagonal terms of the Xij matrix are known, then one 
should use the harmonic frequency as "HAR" and the Xii diagonal term as ANH. 

5. If the fundamental (i.e. "observed") frequency is known and the Xij matrix is not, then 
one should use the fundamental frequency as "OBS" and ANH=0.0. 

6. If the harmonic frequency is known and the Xij matrix is not, then one should use the 
harmonic frequency as "HAR" and ANH=0.0. 

7. If nothing is known, then one must use estimation methods.63  

 

Non-Separable Anharmonic Vibrations 
For asymmetric top molecules, the vibrational energy level relative to the zero point 

energy is given by the following perturbation theory expansion for the vibrational energy:30,31,43  
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where ωi is the harmonic oscillator frequency, Xij, Yijk, and Zijkl are the anharmonicity constants, 
υi is the vibrational quantum number, N is the number of vibrational modes, and Ez is the zero-
point vibrational energy, which is obtained by setting all υi = 0: 
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The array of harmonic frequencies (ω) and the matrices composed of the anharmonicity 
constants (X, Y, Z) can be either obtained from experiment or computed directly from first 
principles, e.g. by quantum chemistry software packages equipped with VPT2.  

When all quantized vibrational energy levels are known, sums and densities of states can 
be counted exactly. From Eq. 3, all Eυ can in principle be computed when all allowed values of υ 
are known. Therefore, the problem reduces to finding all allowed values of υi up to a given total 
internal energy. For a separable harmonic oscillator, all quantum numbers from υ=0 to υ=∞ are 
allowed. A Morse oscillator, however, can dissociate and has only a finite number of vibrational 
states ranging from υ=0 to υ=υmax. The allowed quantum numbers therefore range from υ=0 to 
υ=υmax. For a coupled set of anharmonic vibrations, the maximum quantum number allowed for 
the kth vibration, vD,k, depends on the quantum numbers assigned for all other vibrations. When 
the state energies are described by a perturbation theory expansion containing only X (i.e. Y and 
Z = 0), υD,k can be found analytically27: 
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It must be remembered that υD,k depends on all of the other quantum numbers. When Xkk<0, then 
υD,k is the quantum number for the highest bound level of the kth vibration and the corresponding 
dissociation energy (relative to the zero point energy) of this vibrational mode is Dk: 
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This dissociation energy corresponds to the energy at which Eυ reaches a maximum as υk is 
increased, i.e. (∂Eυ/∂υk) = 0 at υk = υD,k. 

While computing the sums of states from Eυ=0 to a maximum value Eυ=Etot, the range of 
allowed quantum numbers is further restricted. Suppose one proceeds by first starting with all 
quantum numbers set to zero and then assigning quantum numbers one at a time. After assigning 
k-1 quantum numbers and before assigning the kth, υk=0 and the remaining unassigned energy Eu 
is given by 

  
Eu = Etot − Ev ,k−1  (7) 
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where Eυ,k-1 is the vibrational energy Eυ computed using the k-1 quantum numbers already 
assigned. The range of possible quantum numbers for the kth oscillator is therefore υk=0 to υmax,k, 
where υmax,k depends on the amount of unassigned energy: 

  
υmax,k =υD ,k   for Eu ≥ Dk  (8a)  
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  for Eu ≤ Dk  (8b)  

When the Y and/or Z higher-order anharmonicities are included in Eq. 3, analytical 
solution for υD,k is not obtainable and iterative calculations are necessary. In the present work, 
υmax,k is computed iteratively by increasing trial values of υk by unit steps from 0 and monitoring 
Eυ(υk) while all other quantum numbers (υi, i≠k) are held constant. The iterative procedure stops 
as soon as Eυ(υk) becomes smaller than Eυ(υk-1). This decrease corresponds to passing the 
maximum where (∂Eυ/∂υk) = 0. For a state to be "bound" with respect to the kth degree of 
freedom, the derivative must be greater than zero for the trial value of υk: (∂Eυ/∂υk)>0. This 
process is repeated by increasing υk until the (∂Eυ/∂υk)<0 for a trial value of υk. The assignment 
of υD,k is then based on the sign of the first derivative (∂Eυ/∂υk) at υk-1 (see Figure 1), which 
enables one to ensure that the state with υD,k is lower in energy than the classical maximum Eυ. 
When (∂Eυ/∂υk) is >0 at υk-1, then υD,k =υk-1; otherwise, υD,k is set equal to υk-2. 

At energies above the dissociation limit, quasi-bound states exist, where the quantum 
number for every mode does not exceed the dissociation limit for that particular mode. Of 
course, if the energy is redistributed, dissociation can take place. For computing RRKM rate 
constants, quasi-bound states must be counted. Quasi-bound states are identified when the partial 
derivatives (∂Eυ/∂υi)>0 for all i. Therefore, after all quantum numbers 64 have been assigned, the 
partial derivatives {∂Eυ/∂υi}i=1, N are computed and the assigned {υi} is accepted if all elements 
are positive; otherwise the state is rejected. 
 

9.3 Vibrational Degeneracies 
In DenSum and Thermo, vibrational degeneracies are treated as accidental. Identical 

results are obtained if each vibrational degree of freedom with degeneracy NG is entered in the 
data file NG times as a non-degenerate vibration. 

For Harmonic oscillators, the state energies for accidental degeneracies are exactly the 
same as for true degeneracies that arise, for example, from symmetry considerations. For 
anharmonic vibrations, the state energies are no longer quite the same for accidental and for true 
degeneracies, but the differences are small and can be neglected for most kinetics purposes.  

 
[G. Herzberg, "Infrared and Raman Spectra", D. van Nostrand Co., Inc., 1945, p. 210 ff] 
 

9.4 External molecular rotations 
All non-linear polyatomics have principal moments of inertia IA, IB, IC and corresponding 

rotational constants A = ħ2/2IA, etc. When two of the rotational constants are equal to each other, 
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the molecule is termed a symmetric top. In the following, we will assume that A ≠ B = C. The 
rotational energy of a symmetric top is given by 

 Er J,K( ) = BJ J +1( ) + (A − B)K 2
 (1) 

where quantum number J refers to a two-dimensional 2-D adiabatic rotor (i.e. one that 
conserves angular momentum J) and K refers to a one-dimensional rotation about the top axis 
(projection of J on the top axis). For a rigid rotor, the K quantum number is constrained to take 
integer values from -J to +J. Thus each value of |K| is doubly degenerate except for |K|=0, which 
is singly degenerate.  

The rotational states of asymmetric tops are not easily calculated, but partition functions 
and densities of states (but not for high resolution spectroscopy) of very good accuracy are 
obtained by averaging the two rotational constants that are most similar to each other and 
treating the asymmetric top approximately as a symmetric top. One can use either of two 
reasonable approximations for the effective rotational constant B2D for the J-Rotor (when B ≈ C, 
for example): 

B2D = (BC)1/2  [Ref. 16,18] or  B2D = (B +C)/2   [Ref. 65] (2) 

The effective rotational constant BK for the K-rotor is given by  

BK = A − B( ) . (4) 

(This is often pragmatically approximated as BK ≈ A.) The corresponding rotational energy is 
written 

Er J,K( ) = B2DJ J +1( ) + BKK 2  (5) 

Note that entering IA, IB, and IC (or A, B, and C) in the data file for DenSum or Thermo is 
NOT correct, since the state densities and partition functions will not be computed correctly. In 
any non-linear polyatomic, the three external rotations are constrained by the total angular 
momentum: the three rotors are not independent. Thus treating the three rotors as independent 
1D rotations leads to an incorrect result. The approximate symmetric top treatment, which is the 
convention adopted in MultiWell, includes the constraint and thus gives results of good 
accuracy. 

Separable Rotors Approximation for Symmetric Tops 
In a symmetric top, the J-rotor and the K-rotor are coupled, due to the constraint on the K 

quantum number: –J ≤ K ≤ +J. It is usually more convenient to ignore the constraint and treat the 
two rotors as separable. Treating the two external rotors as a separable 2D rotor (the J-rotor) and 
a separable 1D rotor (the K-rotor) allows one to treat the K-rotor as "active" by including it with 
the vibrations and internal rotations when computing the sums and densities of states (see the 
following sub-section). However, there always exist 2J+1 states with the same value of J', even 
for a completely asymmetric top. Thus neglecting the restriction on K has the effect of increasing 
the density and sum of states slightly, but this error is insignificant except for molecules with 
small rotational constants at very low temperatures. 

Current and Rabinovitch examined the separable-rotors approximation and showed that it 
is reasonably accurate, especially when it is assumed that the rotational constant B2D = (BC)1/2 
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and BK = A.32,66 The accuracy obtained using this approximation is illustrated in Table 9.4. In the 
second column are canonical rate constants for OH + CO → trans-HOCO computed using 
SCTST (Semi-classical Transition State Theory is discussed in Section 9.9 of this Manual), 
including the proper constraint on the K quantum number.67 In the third and fourth columns, the 
external rotors of the transition state were treated with the separable rotors approximation and 
two choices for BK. It is clear that the separable rotors approximation is quite accurate when B2D 
= (BC)1/2 and BK  = A. 
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Table 9.4. Bimolecular rate constants a for OH + CO → trans-HOCO computed using three 
different treatments of the external rotors b 

 Properly Constrained Separable Rotors Approximation 
T(K) -J ≤ K ≤ +J BK = A BK = A – B2D 
200 4.517 4.496 4.642 
300 8.201 8.191 8.453 
500 17.25 17.29 17.84 
1000 50.95 51.28 52.91 
2000 146.0 147.6 152.3 

a Units of 10-13 cm3 molecule-1 s-1. 
b Rotational constants A, B, and C (cm-1): 3.6640, 0.2264, 0.2132; B2D = 0.2197 cm-1. 

 

Active Energy and the K-rotor 
In a free molecule, only the total angular momentum is conserved. Thus the J quantum 

number is assumed to be adiabatic (conserved), but the K quantum number can vary within its 
constraints, as do the vibrational quantum numbers, subject to conservation of energy in the 
"active" degrees of freedom. The "active energy" is the energy associated with the vibrational 
quantum numbers and K, collectively. Thus it is said that the energy in the active degrees of 
freedom randomizes, or the K-rotor energy "mixes" with the vibrational energy. 

For a prolate symmetric top (e.g. a cigar shape), A>B and therefore BK >0. For prolate 
symmetric tops, the rigorous constraint -J≤K≤+J is often relaxed in the interest of more 
convenient computation of densities of states. This popular approximation is reasonably accurate 
except at the lowest total energies and is simple to implement because the rotational energy 
Er(J,K) ≥0 for all values of J and K.  

For an oblate symmetric top (e.g. disk-shaped), A<B and hence BK<0; this can give 
Er(J,K) <0 when the unconstrained K >> J. Thus the approximate treatment of the K-rotor may 
fail seriously for oblate tops in Densum. Moreover, densities of states are usually computed by 
treating the J-rotor and the K-rotors as separable. Thus the term BKK2 in the expression for 
rotational energy is <0, confounding the usual methods for computing densities of states, which 
assume only positive energies. 

To utilize the simple approximation in DenSum, Thermo, adensum, and sctst, the K-
rotor is declared as a simple 1D free rotation (type "rot" or "qro") and included with the 
vibrational degrees of freedom when computing the density of states. 

The kro degree of freedom type employs the correct constraints on K for a single user-
specified value of J. Because it considers only a single value of J, it is not used for general 
applications. 

The rotational degrees of freedom in a MultiWell master equation calculation are 
distributed in two input files: the K-ROTOR properties are listed in densum.dat and included in 
density and sums of states calculations. The 2-D ADIABATIC ROTOR moment of inertia is 
listed in multiwell.dat on Line 8 (for wells) or Line 14 (for transition states).  
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9.5 Symmetry numbers, internal rotation, and optical isomers 

External Symmetry Numbers 
For use in DenSum, MultiWell, and Thermo, we recommend the following convention 

for symmetry numbers (described by Gilbert and Smith68): The EXTERNAL SYMMETRY 
NUMBER should not contain any contribution from internal rotors and the external symmetry 
numbers are not used in the calculation of sums and densities of states. INTERNAL ROTOR 
SYMMETRIES are explicitly included in the data lines for the specific internal rotors (DenSum 
and Thermo data files). 

According to this convention, the EXTERNAL SYMMETRY NUMBER for Ethane is 
3x2=6. The symmetry numbers for the external K-rotor and adiabatic 2-D-rotor are set equal to 
unity in both DenSum and Thermo. (Of course the codes are flexible enough so that other self-
consistent conventions may be used instead.) 

Hindered Internal Rotation 
Internal rotors are characterized by both the symmetry of the potential energy (i.e. the 

foldedness, or number of minima (and maxima) per 2π rotation), and the symmetry of the mass 
distribution (or substituents) around the rotor. A potential energy surface computed using the 
Born-Oppenheimer approximation is independent of the masses of the nuclei. The potential 
energy surface for ethane internal rotation, for example, is 3-fold symmetric, but isotopic 
substitution can give either unsymmetrical or symmetrical mass distributions. If both the PES 
and the mass distribution have identical symmetries, then that is also the symmetry number of 
the internal rotor. It is also the number of "indistinguishable minima"; the symmetry number 
compensates for over-counting the number of indistinguishable minima when computing the 
partition function:69 

qhr =
1
σ hr

exp −Ei

kBT
⎛
⎝⎜

⎞
⎠⎟i=1

∞

∑  

where σhr is the symmetry number for the hindered rotor and Ei is the ith energy eigenvalue. 
MultiWell has provision in Thermo and DenSum for both symmetrical and 

unsymmetrical hindered internal rotations. For user convenience, the parameters for 
symmetrical hindered internal rotations may be entered in any one of three ways, designated 
by degree of freedom types "hra", "hrb", and "hrc". These types assume that the reduced 
internal moment of inertia is constant (independent of dihedral angle) and the potential energy of 
the internal rotation is given by a simple cosine function: 

V (χ ) = U
2
1− cos σ hrχ( )⎡⎣ ⎤⎦  

where U is the height of the hindrance barrier, and χ is the dihedral angle (for more complex 
symmetrical potentials, use type "hrd", which is discussed below). If U = 0, then the internal 
rotation should be modeled using a 1-D free rotor (types "rot" or "qro") with the symmetry 
number for the internal rotation.  
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Types "hra", "hrb", and "hrc" offer three convenient methods for entering the 
identical information. The information is identical because the harmonic frequency, hindrance 
barrier height, and the reduced moment of inertia for a symmetrical 1-D hindered internal 
rotation are related by the single equation: 

ν t =
σ hr

2π
U
2Ir

⎛
⎝⎜

⎞
⎠⎟

1/2

  

where νt is the harmonic torsion frequency, U is the height of the hindrance barrier, and Ir is the 
reduced moment of inertia. With any two of these quantities, the third is defined. Note that this 
equation is only valid for σhr>1. 

Unsymmetrical hindered internal rotations (σhr=1) are entered in Thermo and DenSum 
by designating degree of freedom type "hrd", which is a general treatment, but especially useful 
for unsymmetrical hindered internal rotations. Unsymmetrical rotation can be used to describe 
internal rotation with just one well, or with two or more distinguishable wells. It can also be used 
for symmetrical potentials with more complicated potential energy functions. To calculate the 
internal rotor eigenvalues requires the potential energy function and the reduced moment of 
inertia (or rotational constant) as a function of dihedral angle. For an example, see the data for 
ClOOCl in the thermodynamics data base (directory multiwell/thermo-database/). 

For convenience, three forms of the torsional potential energy are accepted by DenSum 
and Thermo (all coefficients in units of cm-1) for using the General hindered internal rotation 
treatment:  

Type Vhrd1 V χ( ) = Vn
2
1− cos nσV χ +ϕV( )( )⎡⎣ ⎤⎦

n=1

N

∑  

Type Vhrd2 V χ( ) =V0 + Vn cos nσV χ +ϕV( )( )
n=1

N

∑  

Type Vhrd3 V χ( ) =V0 + Vn
c cos nσV χ +ϕV( )( )

n=1

N

∑ + Vn
s sin nσV χ +ϕV( )( )

n=1

N

∑  

where χ is the dihedral angle (radians). The parameters σv (symmetry number for the potential 
energy: SYMMV) and φV (phase angle for the potential: PHASEV (radians)) are merely for 
convenience in curve-fitting. 

Also for convenience, either the rotational constant or the moment of inertia, which are 
functions of the dihedral angle, can be entered (all coefficients in units of cm-1).  

Type Bhrd1  (all coefficients in units of cm-1) 

 B χ( ) = B0 + Bn cos nσ B χ +ϕB( )( )
n=1

N

∑  

Type Ihrd1 (all coefficients in units of amu.Å2) 

 I χ( ) = I0 + In cos nσ I χ +ϕ I( )( )
n=1

N

∑  



 

- 87 - 

where χ is the dihedral angle (radians), σB and σI are symmetry numbers (SYMMM) and φB and φI 
are phase angles (PHASEM). It is VERY IMPORTANT that the angles are defined in the same 
way both for the potential and for the mass factor. 

"hrd" Also Used for Symmetrical Internal Rotors. This degree of freedom type can also be 
used for symmetrical hindered internal rotations. The rotor symmetry number (NG) must be 
given, as well as coefficients for V(χ), which must have the same symmetry as the rotor 
symmetry number (the parameter SYMMV may equal unity or a convenient multiple of NG; it is 
only required that V(χ) have the correct symmetry). For an example, see the data for HONO2 in 
the thermodynamics data base (directory multiwell/thermo-database/). 

Optical Isomers 
The classic example of an "optical isomer" (chiral stereoisomer) is methane substituted 

with four unique atoms or isotopes. There is no internal rotation in this classic example, but 
internal rotation can also produce optical isomers. For example, hydrogen peroxide has right-
handed and left-handed forms, which are identical in all respects except for their handedness. 
The "gauche" structures of hydrocarbons may also be optical isomers. Consider the case of 
ethane substituted with one deuterium on each carbon: CH2D-CH2D. This molecule has three 
unique staggered conformers characterized by the D-C-C-D dihedral angle χ: right-handed 
gauche with χ = +60°, left-handed gauche with χ = -60°, and a conformer with Cs symmetry at χ 
= 180°. Usually (and maybe always), an internal rotation that connects optical isomers involves 
an unsymmetrical rotor and therefore care must be taken to treat the optical isomers and 
unsymmetrical hindered internal rotation in a mutually consistent fashion. 

Consider, for example, hydrogen peroxide (H2O2), which has an internal rotation around 
the O-O bond and two non-planar equilibrium structures,70 as shown below.  

 

This V(χ) has symmetry number σv = 1. Over one full rotation, it has two wells of equal depth, 
but the two maxima are of unequal height. Furthermore, the two wells are distinguishable 
because their geometries cannot be superimposed by simple rigid external rotations: they are 
optical isomers. Essentially, this is a double-well potential. 
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There are several ways of modeling this double-well potential. The simplest, but least 
accurate way is to treat this double-well potential is to describe one well as a single harmonic 
oscillator with harmonic frequency evaluated at the minimum and then multiply the sum of 
states, density of states, or partition function by ×2, since there are twice as many states in a 
double-well potential. In other words, the number of optical isomers (parameter m) is equal to 
the number of wells and the exact partition function for this 1-D unsymmetrical hindered internal 
rotation is being approximated as follows: 

qhr = exp −Ei

kBT
⎛
⎝⎜

⎞
⎠⎟i=1

∞

∑ ≈ m ⋅qHO   and ρhr E( ) ≈ m ⋅ ρHO E( )  

where the harmonic oscillator partition function qHO (and density of states ρHO(E)) is calculated 
using the harmonic frequency evaluated at the bottom of the well. Clearly, this approximation is 
only acceptable when the lowest torsion barrier is >>kBT. 

A second approximate method for treating these optical isomers is to treat the hindered 
internal rotation as symmetric with σhr = m and an assumed hindrance barrier height or reduced 
moment of moment of inertia Ir. Reasonable estimates for Ir at the equilibrium structure can be 
obtained,34,62 but this approximation cannot provide accurate results over the entire range of 
temperatures, since it is not possible to approximate both barriers (and the angle-dependent 
reduced moment of inertia) simultaneously. According to this method, the exact partition 
function is approximated as follows: 

qhr = exp −Ei

kBT
⎛
⎝⎜

⎞
⎠⎟i=1

∞

∑ ≈ m ⋅qshr = m ⋅ 1
m

exp
−Es,i

kBT
⎛
⎝⎜

⎞
⎠⎟i=1

∞

∑⎡

⎣
⎢

⎤

⎦
⎥ = exp

−Es,i

kBT
⎛
⎝⎜

⎞
⎠⎟i=1

∞

∑  

ρhr E( ) ≈ m ⋅ ρshr E( )  

where the "shr" subscript designates the symmetric hindered rotor, Ei are the exact 
eigenfunctions for the unsymmetrical internal rotation, and Es,i are the eigenfunctions for the 
symmetric rotor. Although not accurate over the entire temperature range, this approximation 
performs slightly better than the harmonic oscillator approach at low to intermediate 
temperatures. 

In both of the above approximations, m (the number of optical isomers) is used as a 
multiplier and must be entered in the MultiWell and Thermo input files.  

The most accurate approach is to calculate the eigenvalues for the double-well potential 
and use them directly in calculating the partition function for the hindered internal rotor. This is 
done by specifying the "hrd" type of degree of freedom, entering the coefficients for the angle-
dependent potential energy function and angle-dependent reduced moment of inertia62 (or 
rotational constant). For this calculation, m must be set equal to m = 1, since the resulting 
partition function (and density of states) already has the requisite number of levels and should 
not be multiplied by an additional factor. For example, see the data for HOOH in the 
thermodynamics data base (directory multiwell/thermo-database/). 

Of course, not all optical isomers are associated with hindered internal rotation. Those 
optical isomers that are not associated with unsymmetrical hindered rotation should still be 
included in m and entered in the data files. 
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Examples 
 

 σV: Potential 
Symmetry  

σM: Mass 
Symmetry 

σhr: Rotor 
Symmetry 

m: Optical 
Isomers  

External 
Symmetry 

CH3-CD3 3 3 3 1 3 
CH3-CD2H 3 3 3 1 1 
CH3-CDH2 3 3 3 1 1 
CH3-CH3 3 3 3 1 6 
CH2D-CH2D  3 1 1 2 2 
CH2D-CD2H 3 1 1 2 1 
CD3-CD3 3 3 3 1 6 
HOOH 1 1 1 2 2 
CHFClBr — — — 2 1 

 
 

When CH2D-CH2D or HOOH are treated using the "hrd" degree of freedom type 
(unsymmetrical hindered internal rotation), then set internal rotor symmetry to NG=1 and the 
number of optical isomers to  m=1. 
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9.6 A Handy List of Lennard-Jones Parameters 
Combining rules for Lennard-Jones parameters for A + B collisions:  

σ AB =
1
2
(σ A +σ B )   ε / kB( )AB = ε / kB( )A ε / kB( )B⎡⎣ ⎤⎦

1/2
 

      
Species σ  / Å (ε /kB) / 

K 
Ref 

He  2.55 10 1 
Ne  2.82 32 1 
Ar  3.47 114 1 
Kr  3.66 178 1 
Xe  4.05 230 1 
H2  2.83 60 1 
D2  2.73 69 1 
CO  3.70 105 1 
N2  3.74 82 1 
NO  3.49 117 1 
O2  3.48 103 1 
CO2  3.94 201 1 
N2O  3.78 249 1 
NO2 4.68 146 4 
  " 3.46 357 6 
H2O  2.71 506 1 
N2O5 4.93 380 9 
NH3  2.90 558 2 
CH4  3.79 153 1 
C2H2  4.13 224 1 
C2H4  4.23 217 1 
C2H6  4.39 234 1 
C3H6  4.78 271 1 
c-C3H6  4.63 299 1 
C3H8  4.94 275 1 
1-C4H8  5.28 302 1 
cis-2-C4H8  5.27 312 1 
n-C4H10  5.40 307 1 
i-C4H10  5.39 298 1 
n-C5H12  5.85 327 1 
neo-C5H12  5.76 312 1 
C6H6  5.46 401 1 
n-C6H14  6.25 343 1 
c-C6H12  5.78 394 1 
C7H8  5.92 410 1 
C7H16  6.65 351 1 
C8H18  7.02 359 1 
C9H20  7.34 362 1 
C10H22  7.72 363 1 
C11H24  8.02 362 1 
CF4  4.40 166 1 
C2F6  5.19 201 1 
C3F8  5.75 228 1 
c-C4F8  5.93 252 1 
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C4F10  6.30 247 1 
C5F12  6.81 261 1 
C6F14  7.17 265 1 
C7F16  7.78 265 1 
C8F18  7.91 268 1 
CF3Br  4.92 249 1 
CF3Cl  4.79 217 1 
CF2CCl2  5.08 276 1 
CHClF2  4.30 331 1 
CHCl2F  4.57 405 1 
CHCl3  5.18 378 1 
CHF3  4.04 268 1 
CH2Cl2  4.54 458 1 
CH3Br  4.31 416 1 
CH3Cl  4.07 373 1 
1,1-C2H4Cl2  4.85 469 1 
1,2-C2H4Cl2  4.78 503 1 
i-C3H7Cl  4.81 435 1 
t-C4H8Cl  5.23 455 1 
CS2  4.58 415 3 
SO2  4.11 336 4 
SF6  5.20 212 1 
C4H4N2 (Pyrazine) 5.35 307 5 
C2H4O (ethene oxide)  4.08 421 1 
SiH4 4.08 208 7 
SiH3 3.94 170 8 
SiH2 3.80 133 8 
SiH 3.66 95.8 8 
Si 2.91 3036 7 
Si2H6 4.83 301 8 
Si2H5 4.72 306.9 8 
H3SiSiH 4.60 312.6 8 
H2SiSiH2 4.60 312.6 8 
Si2H3 4.49 318 8 
Si2H2 4.36 323.8 8 
Si2 3.28 3036 7 
Si3H8 5.56 331 8 
Si3 3.55 3036 8 

References to Lennard-Jones Parameters 
1. H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78, 6709 (1983).  
2. J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem., 12, 305 (1993). 
3. F. M. Mourits and F. h. A. Rummens, Can. J. Chem., 55, 3007 (1977). 
4. J. Troe, J. Chem. Phys., 66, 4758 (1977). 
5. T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993). 
6. R. Patrick and D. M. Golden, Int. J. Chem. Kinetics, 15, 1189-1227 (1983). 
7. R. A. Svehla, NASA Report, NASA-TR 132 (1962), cited by Ref. 8.  
8. Michael E. Coltrin, Robert J. Kee, and James A. Miller, Electrochem. Soc., 133, 1206-1213 

(1986). 
9. M. W. Makko and J. Troe, Int. J. Chem. Kinetics, 14, 399-416 (1982). 
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9.7 Elements and Isotopes Recognized by MomInert and Thermo 
The following atomic symbols (atom types) are recognized. Note that isotopic species 

have the atomic mass associated with the name, except for Deuterium (D) and Tritium (T), 
which are given their common symbols. Most atomic masses were taken from the "Table of the 
relative atomic masses of the elements, 1981" [Pure Appl. Chem. 55, 1101 (1983)], which is 
cited by JANAF/NIST.36 Isotopic masses were taken from N. E. Holden, "Table of the Isotopes 
(Revised 1998)".71 

 

Species Atomic Mass Species Atomic Mass 
H 1.00794 P 30.97376 
H1 1.007825 S 32.06 
D 2.014102 S32 31.9720707 
T 3.016049 S33 32.97145876 
He 4.00260 S34 33.9678668 
Li 6.941 Cl 35.453 
Li6 6.0151228 Cl35 34.96885271 
Li7 7.0160046 Cl37 36.9659 
Be 9.012182 Ar 39.948 
B 10.81 K 39.0983 
B10 10.0129 V 50.9415 
B11 11.0093 Zn 65.38 
C 12.011 Zn64 63.929 
C12 12.0 Zn66 65.926 
C13 13.003355 Zn68 67.925 
C14 14.003242 Se 78.96 
C16 16.0147 Se78 77.917 
N 14.00674 Se80 79.917 
N14 14.003074 Br 79.904 
N15 15.00010897 Br79 78.918338 
O 15.9994 Br81 80.916291 
O16 15.994915 Kr 83.80 
O17 16.9991315 Rb 85.4678 
O18 17.999160 Sn 118.69 
F 18.998403 I  126.9045 
Ne 20.179 Te 127.60 
Na 22.98977 Xe 131.29 
Mg 24.305 Hg 200.59 
Mg24 23.985 U 238.0289 
Mg25 24.985 U235 235.04393 
Mg26 25.983 U238 238.050788 
Si 28.0855   
Si29 28.98   
Si30 29.97   
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9.8 Eigenstates for large amplitude motions 
Energy eigenstates for large amplitude motions are needed for computing densities of 

states and partition functions. In the MultiWell Program Suite, the eigenstates are computed by 
solving the Schrödinger equation, as described here. 

Theory 
The Schrödinger equation for one-dimensional large-amplitude vibration separable from 

all other motions in the molecule is written as follows59,60,72,73 

   
− 

2

2
∂
∂q

1
Ieff

∂
∂q

+V (q)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ (q) = Eψ (q)  (1) 

where q is the vibrational coordinate, ħ is Planck’s constant, E and ψ are energy eigenvalue and 
eigenvector, respectively. V(q) is the vibrational potential energy function, and Ieff is the effective 
mass, which is in general a function of coordinate q, but which, depending on V(q), is sometimes 
constant. Ieff  can be derived from the ro-vibrational G matrix, which is defined as:59,60,74-76  

  
G = I X

X T Y

⎛

⎝⎜
⎞

⎠⎟

−1

  (2) 

where the I matrix is the 3×3 moment of inertia tensor, the Y matrix (Nvib×Nvib) is the pure 
vibration contribution, and the X matrix (3×Nvib) corresponds to the vibration-rotation interaction 
(Coriolis) terms. Here, Nvib is the number of vibration modes, which equals unity for a 1-D 
separable degree of freedom. All elements of I, X, and Y can be computed from the molecular 
structure as: 

 
   
Ikk = mα rα


⋅rα
( )− rαk( )2⎡

⎣⎢
⎤
⎦⎥α=1

Natom

∑  ; k = x, y, or z (3a) 

  
Ikk ' = mαrαkrαk '

α=1

Natom

∑ ; k ≠ k’ (3b) 

   
Xij = mα rα


×
∂rα


∂qj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥α=1

Natom

∑
i

 (4) 

   
Yij = mα

∂rα


∂qi

⎛

⎝
⎜

⎞

⎠
⎟ i

α=1

Natom

∑ ∂rα


∂qj

⎛

⎝
⎜

⎞

⎠
⎟  (5) 

where the α index runs on the number of atoms (Natom) in the molecule. 
For one-dimensional large-amplitude vibrations, the ro-vibrational G matrix is expressed 

as: 
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G =

Ixx − Ixy − Ixz X11

− I yx I yy − I yz X12

− Izx − Izy Izz X13

X11 X12 X13 Y11

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

−1

 (6) 

By inverting the right hand side of eq. (6), one obtains: 

  

G =

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 (7) 

Finally, Ieff  is obtained as: Ieff = g44
-1. 

Note that in this work, central finite differences are used to compute the derivatives in 
Eqs. (4) and (5). Thus the steps between adjacent positions (e.g. dihedral angles) must be small 
enough so that the derivatives are sufficiently accurate. Acceptable step-sizes must be found by 
trial and error. 

Hindered internal rotations 
For hindered internal rotations, the large-amplitude motions are torsional changes in 

dihedral angles. The Schrödinger equation (1) for a 1-D torsion can be rewritten as follows73: 
 

   
− 

2

2
∂
∂χ

1
Ieff (χ )

∂
∂χ

+V (χ )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ (χ ) = Eψ (χ ) . (8a) 

By defining the rotational constant
   
Bhr =

2

2Ieff

, we obtain: 

− ∂
∂χ

Bhr χ( ) ∂
∂χ

+V χ( )⎡

⎣
⎢

⎤

⎦
⎥ψ χ( ) = Eψ χ( )  (8b) 

where χ is the torsional (dihedral) angle (0≤χ<2π), V(χ) is the torsional potential energy function, 
and Ieff is the effective reduced moment of inertia. Both Ieff and Bhr are in general functions of 
dihedral angle, but are constants for a rigid rotor.  When Bhr is assumed to be a constant, which is 
realistic only for symmetrical rotors, equation (8b) simplifies: 

−Bhr
∂2

∂χ 2 +V χ( )⎡

⎣
⎢

⎤

⎦
⎥ψ χ( ) = Eψ χ( )  (9) 

Solutions of equation (9) are not given here, but are well known.73,77,78  
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For the purpose of calculating densities of states and computing partition functions in the 
MultiWell Suite, Eq. (8b) is diagonalized to obtain energy eigenvalues, whether or not Bhr is 
assumed to be constant. The solutions are obtained by using the method described by Meyer.73 
The Hamiltonian matrix of Eq. (8b) is given by: 

H = −DBhrD+V = DT BhrD+V  (10) 

where D is the matrix of the first-order derivative (∂/∂χ) operator of the internal rotation angle, 
DT is the transpose of D (i.e. DT(i,j) = D(j,i)), V(i,i) is the diagonal matrix of the potential energy 
operator, and Bhr(i,i) is the diagonal matrix element of the rotational constant; the indices are for 
equally spaced torsion angle grid points. For 2N +1 grid points, the elements of D are: 

  D i,i( ) = 0  (11a) 

D(i, j) = −1( )i− j 2sin i − j( )π / 2N −1( )⎡⎣ ⎤⎦{ }−1     for i ≠ j (11b) 

To construct the symmetric matrix H, one requires both V(χ) and Bhr(χ). Several common 
representations of V(χ) and B(χ) (or the corresponding moment of inertia function I(χ)) can be 
understood by MultiWell, as explained elsewhere in this manual. The matrix H is diagonalized in 
order to obtain a vector of energy eigenvalues, which are convoluted with states from the other 
degrees of freedom to compute ro-vibrational densities of states or partition functions.  

Users must supply the functions V(χ) and Bhr(χ) (or moment of inertia function I(χ)). 
Potential energies V(χ) and molecular geometries can be computed at discrete values of χ by 
obtained by using any of the many available quantum chemistry codes, such as Gaussian,56 C-
Four,57, and Molpro.61. The results for V(χ) can be fitted to a suitable truncated Fourier series, 
and one may use codes like the I_Eckart program62 (written for use with MatLab) or LAMM 
program given in the MultiWell Suite to compute Bhr(χ) or Ihr(χ). 

 

9.9 Semi-Classical Transition State Theory 
Much of this section was adapted from Ref. 7. 
Program sctst uses a new algorithm7 developed for computing rate constants with 

semi-classical transition state theory (SCTST), which was formulated by Miller and 
coworkers.12-15 SCTST incorporates non-separable coupling among all degrees of freedom and 
multi-dimensional quantum mechanical tunneling along the curved reaction path. The algorithm, 
which is practical for reactants containing dozens of atoms, predicts both microcanonical and 
canonical rate constants. In addition, the quantum chemistry code CFOUR has been extended to 
efficiently compute fully coupled vibrational anharmonicities for transition states at the 
CCSD(T) level of theory. 

Semi-classical transition state theory (SCTST), has been described by W. H. Miller and 
coworkers.12-15 In combination with second-order vibrational perturbation theory (VPT2),51 the 
SCTST accounts explicitly for non-separable coupling among all degrees of freedom (including 
the reaction coordinate) in the transition state region and multidimensional semi-classical 
tunneling.14,15 Miller, Handy and coworkers have shown that the SCTST thermal rate constants 
are in close agreement with those of full quantum dynamic calculations and experiments.14,79,80 
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However, the SCTST method has been limited to small reaction systems having only 3-4 atoms 
because of the large number of quantum states that must be computed for larger systems.14,79,80 

The new computer code sctst makes it practical to apply the theory to polyatomic 
reactions. The new algorithm is based on an extension of methods for computing sums and 
densities of states for fully-coupled anharmonic vibrations, which were described recently.6 In 
addition, an extension of the CFOUR electronic structure code 57 is described for computing the 
anharmonicity constants of transition states at the CCSD(T) level of theory. This new extension 
has enabled rate constant predictions based on a high level of theory.7  

Theory 
According to the SCTST of W. H. Miller and coworkers,14 the microcanonical and 

canonical rate constants are written: 

  
k(E) = 1

h
G‡(E)
ρ(E)

 (1) 

  
k(T ) = 1

h

G‡(E)exp(−E / kBT )dE
−∞

+∞

∫
Qre(T )

 (2a) 

where h is Planck’s constant, kB is Boltzmann’s constant, T is the temperature, ρ(E) is the density 
of states of the reactant, Qre is the total partition function of the reactant(s), and G‡(E) is the 
cumulative reaction probability (CRP).12. The center of mass translations are rigorously 
separable. At temperatures that are not too high, it is a good approximation to treat the overall 
rotations as separable from the vibrations (including internal rotations), so that Eq. (2a) can be 
written: 

  
k(T ) = 1

h
Qt

‡Qr
‡

QtQr

Gv
‡(Ev )exp(−Ev / kBT )dEv−∞

+∞

∫
Qv (T )

  (2b) 

in which vibrational energy Ev is the variable of integration and the vibrational CRP is given by: 

  
Gv

‡(Ev ) = ... Pn(Ev )
nF−1=0
∑

nF−2=0
∑

n2=0
∑

n1=0
∑    (3) 

In Eq. 3, F-1 is the total number of vibrational degrees of freedom orthogonal to the reaction 
path. The semi-classical tunneling probability Pn is given by14 

  
Pn(E) = 1

1+ exp[2θ(n, E)]
  (4) 

where 

  
θ(n, E) = πΔE

ΩF

2

1+ 1+ 4xFFΔE / ΩF
2

 (5) 

  
ΔE = ΔVo + εo − E + ω k nk +

1
2

⎛
⎝⎜

⎞
⎠⎟k=1

F−1

∑ + xij ni +
1
2

⎛
⎝⎜

⎞
⎠⎟

nj +
1
2

⎛
⎝⎜

⎞
⎠⎟j=i

F−1

∑
i=1

F−1

∑  (6a) 
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ΩF =ω F − xkF nk +

1
2

⎛
⎝⎜

⎞
⎠⎟k=1

F−1

∑        with  ω F = −iω F  and  xkF = ixkF  (7) 

In these expressions, ωk is the harmonic vibrational frequency, ωF is the imaginary frequency of 
the reaction barrier, xij are the anharmonicity constants that describe coupling among the 
orthogonal degrees of freedom, xkF are the (pure imaginary) coupling terms between the reaction 
coordinate and the orthogonal degrees of freedom, and xFF is the real-valued anharmonicity 
constant for the reaction path, and ΔVo is the classical barrier height. The term ε0 is a constant, 
which is irrelevant in spectroscopic measurements (where only energy differences are 
important), but which must be included for thermochemistry.52,79 

For convenience, the reaction barrier height is often expressed as the difference between 
the zero point energy of the transition state and that of the reactant(s) (i.e. the vibrationally 
adiabatic ground-state potential energy difference ΔVa

G‡), giving the following expressions: 

  
k(T ) = 1

h
Qt

‡Qr
‡

QtQr

Gv
‡(Ev )exp(−Ev / kBT )dEv−∞

+∞

∫
Qv (T )

   (2c)   

  ΔE = ΔVa
G‡ − E + Ev

‡  (6b) 

  
Ev

‡ = ω k nk +
1
2

⎛
⎝⎜

⎞
⎠⎟k=1

F−1

∑ + xij ni +
1
2

⎛
⎝⎜

⎞
⎠⎟

nj +
1
2

⎛
⎝⎜

⎞
⎠⎟j=i

F−1

∑
i=1

F−1

∑ − 1
2

ω k −
1
4k=1

F−1

∑ xij
j=i

F−1

∑
i=1

F−1

∑  (8) 

and εo is incorporated into the zero-point vibrational energy of the orthogonal modes: 

 
  
Ezpe = ε0 +

1
2

ω k
k=1

F−1

∑ + 1
4

xij
j=i

F−1

∑
i=1

F−1

∑  (9) 

In the next section, the new algorithm for computing the CRP is presented. For canonical 
(thermal) systems, Hernandez and Miller have described an efficient method for computing the 
rate constants directly from SCTST without the necessity for computing the CRP.15 A small 
modification of the new algorithm presented below can be used for this purpose, but will not be 
described here because we are primarily interested in computing k(E), the microcanonical rate 
constant, which requires the use of the CRP. However, with the CRP in hand, thermal rate 
constants can easily be obtained by averaging k(E) over the thermal energy distribution function. 
With minor extensions, the methods described here are also appropriate for computing k(E,J), the 
microcanonical rate constant for a specified total angular momentum quantum number J. 

New Algorithm 
In Eqs. (1) and (2c), the CRP is obtained by summing over all states of the transition 

state. When the state energies can be estimated from harmonic frequencies and anharmonicity 
constants, the summations in Eq. 3 can be evaluated exactly. In this "exact count" method, a 
realization of the vector {nk} of the vibrational quantum numbers is first determined for every 
quantum state of the transition state and the CRP is obtained via nested DO-loops using Eqs. (3)-
(8). Such calculations are quite fast for systems with 3-4 atoms, but they become impossibly 
slow for systems containing more atoms. The same obstacle is encountered when computing 
densities of states for coupled vibrational states.6 
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Recently, three practical methods for computing vibrational sums and densities of states 
were compared.6 These included the brute force direct method, an "efficient" Monte Carlo 
method,48 and an extended version of the algorithm published by Basire et al.,50 which is based 
on the Wang-Landau algorithm.49 The extended algorithm is particularly useful for large 
molecular systems. As explained elsewhere,6 all three of the algorithms are based on a 
perturbation theory expansion of the state energies expressed as functions of the vibrational 
quantum numbers. (These algorithms are implemented in programs doloops, ansum, and 
adensum.) A logical extension of these algorithms allows computation of the CRP.   

According to SCTST, only ΩF in Eq. (7) and Ev
‡ in Eq. (8) depend on the vector {nk} of 

vibrational quantum numbers; all of the other quantities are constants. In the implementation of 
the Wang-Landau algorithm,6 the energy axis is divided into many small grains (i.e. energy bins, 
e.g. with δE=10 cm-1). The algorithm is a random walk procedure in which each step is accepted 
or rejected, based on certain criteria. For each step that is accepted, a vector of quantum numbers 
has been generated, which is accepted as long as each quantum number is not greater than the 
highest bound state in each degree of freedom. This condition is evaluated by computing partial 
derivatives of the state energy with respect to the quantum numbers, as described by Nguyen and 
Barker 6. Acceptable states include the metastable states, which have total energies above the 
dissociation energy (or reaction energy barrier), but do not have enough energy localized in the 
reaction coordinate to react. These are the vibrational states of the transition state. 

The density of states algorithm is carried out iteratively. During each iteration, each 
energy bin that contains a vibrational state is sampled a large number of times. The relative 
density of states estimate is up-dated on the fly and, after a series of iterations, it converges to the 
exact relative density of states. After the relative density of states is normalized, the algorithm 
terminates (see Ref. 6 for a detailed description). The CRP can be calculated by using the 
vibrational density of states ρv

‡(E) (which may have been computed previously) 6 and by 
carrying out a single iterative cycle with the same stepping algorithm used for the density of 
states calculation. On every accepted step into an energy bin, ΩF and Ev

‡ are computed using the 
vector of quantum numbers {nk}. From these quantities, average values and the corresponding 
average probability are obtained by using Eqs. 4-7 for the ith energy bin at energy Ei: <ΩF>i = 
ΩFi/Hi, < Ev

‡>i = Ev
‡

i/Hi, and average probability <P(Ei)>, where Hi is the number of samples in 
the ith bin. The averages become essentially independent of the number of samples for a 
sufficiently large number (typically 104/bin). The algorithm accumulates samples in all of the 
energy bins where acceptable states exist. If no acceptable states exist in a bin, then <P(Ei)>=0 in 
that bin. Finally, the CRP is obtained by using the average probability multiplied by the number 
of states in each energy bin (i.e. ρ(Ei)δE): 

  
Gv

‡(Ev ) = δ E ρ Ei( ) P Ei( )
i=1

Ev /δ E

∑  (10) 

In the published adensum computer program for computing sums and densities of 
states,81 the number of samples in each energy bin is conveniently selected by specifying a key 
word: FAIR, GOOD, BETTER, BEST, or EXTRA specifies 102, 103, 104, 105, or 106, samples per 
bin, respectively. These key words are also used for specifying the number of samples used to 
compute the average quantities defined above for the SCTST. 

The accuracy of this new random walk algorithm was tested by comparing results 
obtained using the new algorithm with those obtained from the exact count method (i.e. the 
nested DO-loops method) for the OH + H2 reaction. For this reaction, the agreement between the 
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two approaches is excellent, as shown in Figure 1, when ≥104 samples/bin are used for 
computing the averages. The differences between the "exact" CRP (obtained using explicit 
nested DO-loops) and the ones based on the new algorithm are less than 5% even at the highest 
energy (50000 cm–1), resulting in differences of <0.5% between the vibrational partition 
functions at 2500 K for the transition state.  

Program sctst (Section 7.4) generates a supplementary data filed named 
<name>.qcrp, which is required when using program Thermo to compute thermal rate 
constants using the SCTST. This data file contains the partition function corresponding to the 
CRP. 

  
Qv

‡ T( ) = ρv
‡(Ev )exp(−Ev / kBT )dEv0

+∞

∫ = kBT( )−1
Gv

‡(Ev )exp(−Ev / kBT )dEv0

+∞

∫  (11) 

where ρ‡
v(Ev) is the derivative of G‡

v(Ev) with respect to Ev. The integral on the right hand side of 
Eq. 11 is needed for Eq. 2c. The expression for Q‡

v(T) is more convenient for use with program 
Thermo. 

VPT2/CCSD(T) for Transition States 
All of the harmonic vibrational frequencies and xij anharmonicity coefficients can be 

obtained for stable species from first principles by using second order vibrational perturbation 
theory (VPT2), which has been implemented for stable molecules in quantum chemical software 
packages such as GAUSSIAN 56 and CFOUR 57. The anharmonicity coefficients are obtained 
from the full cubic force field together with the semi-diagonal quartic force field, which can be 
computed by finite differences from the analytic first and second derivatives 57,82. For highly 
accurate methods such as CCSD(T), analytic second derivatives are only available in CFOUR 57. 
For this work, VPT2 computation of the anharmonicities was implemented for transition states at 
the CCSD(T) level of theory in CFOUR. Whenever Fermi resonances are detected, 
deperturbation was applied using a criterion of 100 cm-1 for the frequency difference. The 
combination of the new algorithm for the SCTST and implementation of VPT2 for transition 
states constitutes an effective tool for computing the CRP and/or thermal rate constants from first 
principles with high accuracy. 

Reaction Critical Energy 
In the absence of quantum mechanical tunneling, the critical energy E0 for a unimolecular 

reaction (or a bimolecular reaction according to microcanonical TST) is the difference between 
the enthalpies at 0 K of the transition state and the reactant(s):  

E0 = ∆fHTS(0) - ∆fHreac(0) (12) 
This definition of the reaction critical energy is not appropriate when quantum 

mechanical tunneling occurs, because tunneling takes place at lower energies. Tunneling occurs 
whenever the energy is below the top of the barrier (i.e. E < E0, where E0 is defined as above) but 
above that of the zero point energy of the product. Thus when tunneling is included the 
appropriate value to be utilized for "E0" depends on whether the reaction is endothermic or 
exothermic (including zero point energy corrections), regardless of the reaction barrier height.  

In the MultiWell master equation code, the critical energy is defined as in Eq. 12 even 
when tunneling through an Eckart barrier is invoked (keyword 'tun' on Line 14 in the 
multiwell.dat data file), because the reactant and product enthalpies are employed 
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automatically to account for tunneling below the top of the barrier. When using an external file 
containing the CRP generated by Program sctst, this step is NOT automated and the user must 
enter the value for critical energy obtained from the following: 

Endothermic reactions: E0 = ∆fHprod(0) - ∆fHreac(0) (13a) 
Exothermic reactions: E0 = 0 (13b) 

 
(Note: the keyword 'tun' only applies to tunneling through an Eckart barrier and must NOT be 
employed when using the CRP.) 

 

9.10 Legacy and Current Versions of k0 and k∞ in MultiWell 
 
Early in 2011 it was discovered that the centrifugal corrections had not been implemented 
correctly. This affected the "informational" values if k0 and k∞ tabulated in the MultiWell output 
files. This section summarizes the actual implementations. See Appendix Section 2.3 of this User 
Manual for a summary of the theory. 

Legacy Basis 
Legacy expressions for kuni, k∞ and k0 were based on Robinson & Holbrook Eq. 4.30.31 In the 
following, ω = k2[M] (in the notation of Robinson & Holbrook). 

  
kuni =

Q1
+

Q1

1
Q2

exp −E0 / kT( )ω ρ E+ + E0 + ΔEJ( )ka E+ + E0 + ΔEJ( )e−E+ /kT dE+

ω + ka E+ + E0 + ΔEJ( )0

∞

∫  

where 

  
ka E+ + E0 + ΔEJ( ) = L‡

h
G E+( )

ρ E+ + E0 + ΔEJ( )  

  
ΔEJ = 1− I +

I
⎛
⎝⎜

⎞
⎠⎟

kT  

G(E+) is the sum of states starting from the ZPE of the TS; L‡ is the reaction path degeneracy. 
 
The limits: 

  
k∞ =

Q1
+

Q1

1
Q2

exp −E0 / kT( ) ρ E+ + E0 + ΔEJ( )ka E+ + E0 + ΔEJ( )e−E+ /kT dE+

0

∞

∫  

  
k0 =

Q1
+

Q1

1
Q2

exp −E0 / kT( )kLJ ρ E+ + E0 + ΔEJ( )e−E+ /kT dE+

0

∞

∫  

 
As actually implemented in the Codes: 
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Multiwell-2011  
CENT 

  
k∞ = I +

I
1

Q2

exp −E0 / kT( ) ρ E+ + E0 + ΔEJ( )ka E+ + E0 + ΔEJ( )e−E+ /kT dE+

0

∞

∫  

  
k0 =

I +

I
1

Q2

exp −E0 / kT( )kLJ ρ E+ + E0 + ΔEJ( )e−E+ /kT dE+

0

∞

∫  

 
NOCENT 

  
k∞ = I +

I
1

Q2

exp −E0 / kT( ) ρ E+ + E0( )ka E+ + E0( )e−E+ /kT dE+

0

∞

∫  

  
k0 =

I +

I
1

Q2

exp −E0 / kT( )kLJ ρ E+ + E0( )e−E+ /kT dE+

0

∞

∫  

For this case, E' = E0 + E+. Therefore: 

  
k∞ = I +

I
1

Q2

ρ ′E( )k ′E( )e− ′E /kT d ′E
E0

∞

∫  

  
k0 =

I +

I
1

Q2

kLJ ρ ′E( )e− ′E /kT d ′E
E0

∞

∫  

 

Multiwell-2011.1 and later versions 
'NOCENT' for no centrifugal correction 
'CENT1' for quasi-diatomic centrifugal correction with 1 adiabatic external rotation 

(for special cases) 
'CENT2' (This is the usual choice for most reactins) for quasi-diatomic centrifugal 

correction with 2 adiabatic external rotations 
'CENTX' for legacy centrifugal correction with 2 adiabatic external rotations (not 

recommended) 
[Note: the calculated k∞ is numerically the same for all options.] 
 

NOCENT 
(These expressions differ from v.2011 by elimination of the factor I+/I.) 

  
k∞ = 1

Q2

ρ ′E( )k ′E( )e− ′E /kT d ′E
E0

∞

∫  
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k0 =

1
Q2

kLJ ρ ′E( )e− ′E /kT d ′E
E0

∞

∫  

 
CENT1, CENT2, and CENT3  

Note: variable of integration; may be E+ or E'. 

  
′ka ′E( ) = I +

I
exp ΔEJ / kT( )ka ′E( )  

  
k∞ = 1

Q2

ρ ′E( ) ′ka ′E( )e− ′E /kT d ′E
E0+ ΔEJ

∞

∫  

  
k0 =

1
Q2

kLJ ρ ′E( )e− ′E /kT d ′E
E0+ ΔEJ

∞

∫  

 
CENTX 

Here, x = E+. 

  
k∞ = I +

I
1

Q2

ρ x + E0 + ΔEJ( )ka x + E0 + ΔEJ( )e− x+E0( )/kT dx
0

∞

∫  

  
k0 =

I +

I
1

Q2

kLJ ρ x + E0 + ΔEJ( )e− x+E0( )/kT dx
0

∞

∫  
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10. How to … 
This section outlines how to carry out various tasks needed by many users. It is under 

development and more sections will be added in future releases of this User Manual. 

10.1 How to set up the double arrays in MultiWell 
The double arrays consist of two arrays in one. The lower energy portion ranges in 

energy from E = 0 up to Emax1; the upper energy portion ranges in energy from E = 0 up to 
Emax2. The total size of the double array is Isize and the number of  "energy grains" (i.e. 
energy bins) in the lower and upper parts of the double array are Imax1 and Imax2, 
respectively, and the respective energy grain sizes are Egrain1 and Egrain2. The 
relationships among these quantities are as follows:  

Emax1 = (Imax1-1)*Egrain1 
Emax2 = (Imax2-1)*Egrain2 

Isize = Imax1 + Imax2 
To set up double arrays, users must specify Egrain1, Imax1, Emax2, and Isize; the 

remaining parameters are determined by the program from the relationships given above. The 
following guidelines are useful for deciding on the values for the parameters. 

 
Egrain1 

• Should be small enough so that further reductions in its size do not significantly affect the 
numerical results (i.e. it should achieve numerical convergence). 

• Should be ~10% of kBT, or less (for good accuracy in computing k∞). 
• Should not be too small, since that adds a computational burden. 
• Typical choices: 5 or 10 cm-1 (usually 10 cm-1). 

Imax1 
• Should be large enough so that the density of states in adjacent energy grains near 

Emax1 differ by less than 5%. DenSum will give a warning if the grain-to-grain 
fluctuations are too large. 

• Typically, Imax should be large enough so that Emax1 is greater than the highest 
vibrational wavenumber (typically greater than ~3000 cm-1). 

• Typical choice: 400 (for Egrain1 = 10 cm-1). 
Emax2 

• Should be high enough so that none of the stochastic trials attempt to reach a higher 
energy. If that occurs, MultiWell execution will halt and a Fatal Error will be reported. 

• Typical choices: 50000 cm-1 for T ≤300 K; 85000 cm-1 for T≤3000 K. 
Isize 

• Should be chosen large enough so that Egrain2 ≤ kBT/2 (for good convergence on the 
numerical computation of k∞). 

• Typical choices: 1000 for simulations at 300 K, 1500 for very high temperatures. 
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10.2 How to test the double-array parameters in MultiWell  
In principle, it is wise to test your choices of parameters to determine whether the 

calculations are reaching numerical convergence. In other words, one should determine whether 
the choices of Egrain1 and Egrain2 are small enough and that Emax1 and Emax2 are high 
enough. 

The tests are carried out on a small subset of representative simulations with pressures 
and temperatures at the middle and at the extremes of their ranges, for a total of nine simulations. 
For narrow pressure ranges and temperature ranges, only one representative set of conditions 
may be necessary. Thus the amount of testing depends on the system and on experience with 
similar simulations. 

Numerical convergence has been achieved when the grain sizes are small enough and the 
maximum energies are high enough so that further grain size reductions and/or further maximum 
energy increases do not result in significant differences in the calculations. 

The most important measure of convergence is to ascertain whether the fractional yields 
computed for the same simulated time duration are independent of the grain size. 

Two additional key quantities affected by grain size and maximum energy are kinf and 
kosc (i.e. the high pressure limit k∞ and the low pressure limit k0), which are printed by 
MultiWell for information purposes in the table summarizing transition state and reaction 
properties (preceding the table summarizing the stochastic simulations). These rate constants are 
not actually used by MultiWell in the simulations, but they are useful to users. The value for 
k∞ should agree within a few percent with the corresponding canonical rate constant calculated 
by Thermo with the same input parameters. 

 

10.3 How estimate Lennard-Jones and energy transfer parameters  
It is very difficult to compute proper energy transfer parameters. Instead, they are usually 

obtained by fitting experimental rate constant data. There are two parts to the problem: obtaining 
Lennard-Jones (LJ) parameters and estimating energy transfer parameter α for the exponential-
down model, which is recommended for most purposes. 

The LJ parameters can be estimated by using the critical properties of the compound, 
which may in turn be estimated using various empirical correlations. However, it is almost 
always sufficiently accurate to estimate the parameters, based on analogy. A table of LJ 
parameters can be found in Section 9.6 of this User Manual. 

Experience shows that parameter α in the exponential model (i.e. a single component of 
the bi-exponential model) usually is in the range from 100 cm-1 to 1000 cm-1; 250 cm-1 is a  good 
first guess.  

Experimental rate constant data can be fitted by varying the value of parameter α until a 
good fit has been achieved. It is efficient to start by computing results for several values of α that 
cover the whole range expected (typically 100, 250, 500, and 1000 cm-1). For most molecular 
species, the "true" value is probably somewhere in this range. By examining a plot of the data 
superimposed on a plot of this family of simulations, it will be possible to get a better estimate of 
the fitted value. The plot will also demonstrate the sensitivity of the simulations to the assumed 
value.  
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10.4 How to calculate a thermal unimolecular rate constant 
MultiWell does not calculate conventional unimolecular reaction rate constants directly, 

because it does not assume that the energy distributions are at steady state. To find kuni in the 
pressure fall-off regime, you need to carry out simulations at the temperature and pressure of 
interest. Then, you can find kuni in one of two ways (outlined below) which both depend on the 
population distributions reaching steady-state. The population distributions will approach steady-
state values if the reaction rates are slower than the energy relaxation rates. Here are the two 
methods: 

a) the output file 'multiwell.rate' gives the instantaneous average rate constants for all the 
reactions, based on the instantaneous population distributions and on k(E) for each reaction. AT 
STEADY STATE, the instantaneous average rate constant is equal to kuni. To use this feature, 
however, requires many, many stochastic trials in a single simulation in order to reduce the 
stochastic sampling noise. This technique can be used for multi-well, multi-channel reaction 
systems, but one must understand that the steady-state energy distribution and corresponding 
steady-state reaction rate constants may be strongly affected by the existence of the competing 
reaction channels and do not correspond to those for a simple unimolecular reaction. 

b) AT STEADY STATE, the decay of population in a SINGLE-CHANNEL 
IRREVERSIBLE reaction depends on time and on kuni, which is obtained from a semi-log plot of 
population ("fraction") as a function of time. The slope of the plot is slope = -kuni. This technique 
can also be used for REVERSIBLE reactions, if reaction in the reverse direction is slow enough 
(an example of separation of time scales). 

It is important to note that if the unimolecular decay requires more than a few thousand 
collisions, the simulations become very time-consuming. MultiWell is not designed for 
computing slow, steady-state unimolecular reactions. 

 

10.5 How to determine recombination rate constants  

At the High Pressure Limit 
The best way to compute the infinite pressure limit rate constants for recombination and 
unimolecular reaction is to use THERMO, which has the capability to compute canonical 
transition state theory rate constants (CTST), which uses the standard separable approximation 
(and can include quantum tunneling through an unsymmetrical Eckart barrier), and semi-
classical transition state theory (SCTST), which includes full inter-mode coupling and 
multidimensional quantum tunneling. You will need to supply vibration/rotational constants and 
relative energies for the reactant(s) and transition state. 
 
Note that krec(T,[M]) and kuni(T,[M]), the recombination  and unimolecular rate constants at 
concentration [M] (which is proportional to pressure) and temperature T, are related according to 
equilibrium constant: 
 

A + B ⇌ C 

  
Keq =

krec T , M⎡⎣ ⎤⎦( )
kuni T , M⎡⎣ ⎤⎦( )  
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This relation ship applies at all values of [M]. 

In the Pressure Fall-Off 
To compute fall-off rate constants as a function of pressure, two or three steps are 

required. The choice of procedure must account for the fact that both forward and reverse 
reactions are taking place simultaneously, along with collisional activation and deactivation. In 
most cases, the time constant for collisional activation/deactivation (typically corresponding to 
50 to 1000 collisions) is much shorter than the characteristic time constant for unimolecular 
reaction, and a rate constant can be defined formally, but in some cases the reaction rates cannot 
be disentangled from the collisional thermalization process. Multiwell can simulate the whole 
range of behaviors. The following describes strategies for the normal case when rate constants 
can be defined. 

In MultiWell, the chemical identity of each chemical species (MOL) is independent of its 
internal energy. Thus, molecules are assumed to have unique chemical identities even when they 
have energies in excess of reaction barriers and while they are undergoing activation and 
deactivation.  

Recombination and unimolecular dissociation reactions are closely related: 

A + B ⇌ C 

Where the forward reaction is recombination and the reverse is unimolecular decomposition. The 
relationship between the rate constants and the equilibrium constant, which can be calculated by 
THERMO, will be used later 

  
Keq = krec / kuni  

In the case of a simple recombination reaction, one can use MULTIWELL to simulate the 
reaction over a time interval, typically a few hundred or a few thousand collisions. As written, 
the reaction has one Well ("C") and one set of terminal products ("A+B") corresponding to a 
single reaction channel. It is important to note that if the unimolecular decay requires more than 
a few thousand collisions, the simulations become very time-consuming. MultiWell is not 
designed for computing slow, steady-state unimolecular reactions. 
 
Steps in the procedure: 
 
1) Using vibrational and rotational constants for "C" and for the transition state (TS), compute 
sums and densities of states using DENSUM and place the "____.dens" files in directory 
DensData for use by MULTIWELL. 
 

2) Use MULTIWELL in one of two ways, Method A or Method B, depending on the 
reaction system and conditions. Both methods rely on separation of time scales: the steady-state 
reaction must be considerably slower than collisional thermalization and associated relaxation of 
the non-steady-state energy distribution. If one runs a longer simulation, one will often find that 
product C hasn't really become constant, but is decaying with a slower time constant. If this 
decay is slow enough, it can be neglected when assessing the much faster chemical activation 
process. 

The reliance on separation of time scales is typically a good method as long as the time 
scales for the recombination and unimolecular decomposition differ by an order of magnitude or 



 

- 107 - 

more. When that condition is not satisfied, as is often true at high temperatures, a better course of 
action is to determine the steady-state kuni(T,[M]) by Method B and use the relationship between 
the rate constants and the equilibrium constant to obtain krec(T,[M]). But if the time scales are too 
similar, and a steady-state energy distribution is not established, a rate constant cannot be defined 
and it will not be possible to separate the reaction rate from the effects of collisional 
thermalization. 
 
Method A: When the unimolecular decomposition reaction rate is much slower than collisional 
"thermalizaton", initiate the simulations using the chemical activation energy distribution (key 
word CHEMACT) for Well "C". Run the simulations for a simulated time duration tmax 
corresponding to a number of collisions sufficient for thermalizing all of the surviving 
population of excited "C" (typically 50 to 1000 collisions). Over the course of time, the 
population of C is affected simultaneously by both collisional deactivation and bond fission back 
to the initial reactants. Thus the energy of C decreases monotonically until it reaches steady state. 
At the same time, the yield of C (its "fraction") asymptotically decreases toward a constant value. 
When the energy of C is low enough, the subsequent very slow steady-state unimolecular bond 
fission can be neglected. MULTIWELL will report f(C, tmax), the fraction of initial "C" that 
survives to the end of the simulation (conveniently reported in output file multiwell.sum). 
If tmax is large enough and bond fission is slow, the numerical value of f(C, tmax) will remain 
constant even if tmax is increased. The recombination and unimolecular reaction rate constants at 
that pressure and temperature are given by:  

  
krec T , M⎡⎣ ⎤⎦( ) = krec,∞ T( ) ⋅ f C,tmax( )  

When the reaction is just one of several in a multi-channel reaction system, it is necessary 
to use the following method. 
 
Method B: At high T, when kuni(T,[M]) is fast (i.e. when the time scale for reaction is shorter 
than the time corresponding to roughly 104 collisions), it is more effective to simulate the 
unimolecular decomposition reaction. This is accomplished by initiating the reaction of "C" with 
the thermal energy distribution (key word THERMAL). Multiwell will report f(C,t) the fraction of 
C that survives to time t in output file multiwell.out. The fraction f(C,t) is proportional to 
the concentration of species "C" as a function of time. Initially, f(C,t) decays very rapidly as the 
initial population distribution evolves and converges to the steady-state distribution, which is 
called the "fall-off" distribution for a simple unimolecular reaction. Once the steady-state 
distribution has been established, f(C,t) decays exponentially and a plot of ln[f(C,t)] v.s t will 
give a straight line with slope = −kuni(T,[M]).  
     Thus this method requires plotting the results vs. time and extracting the rate constant. This is 
easily done using spreadsheets, or data plotting applications. 
 

For chemical activation reactions, the procedures are similar to those for recombination 
reactions. 

A + B ⇌ C → D 
In a chemical activation reaction, the excited intermediate C initially has enough energy to react 
and produce product D. The yield ("fraction") of D depends on the competition between 
collisional deactivation and unimolecular reactions involving the intermediate C. The effective 
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chemical activation rate constant describing the production of D is obtained from the yield of D , 
which is reported by MULTIWELL as the fraction f(D,t) at the end of the simulation: 

  
kA+B→D T , M⎡⎣ ⎤⎦( ) = krec,∞(T ) ⋅ f (D,∞)  

where krec,∞(T) is the high pressure limit for A + B recombination. 
With all of these methods, one must bear in mind that the presence of competing 

reactions (e.g. reverse reaction and other reaction channels) may strongly influence the steady-
state energy distribution, which ultimately controls the reaction rates and derived rate constants. 
The separation of time scales is often, but not always, sufficient to simplify the analysis. But 
sometimes it is only possible to determine individual rate constants by analyzing the simulation 
output just like analyzing experimental kinetics data.  

Sometimes, steady state is never established and rate constants cannot be rigorously 
defined. Even under non-steady-state conditions, however, the Multiwell simulations can be used 
to accurately model the time-dependent fractions and the final product yields. 
 

10.6 How to tell if the simulated time is long enough 

Experiments 
When simulating actual experiments, the simulated time should match the experiment 

times. Bear in mind, however, that Multiwell is not intended for simulating slow steady state 
reactions. Because it simulates every individual collision, it is most suitable for simulated times 
corresponding to a few thousand collisions, or less. This is quite sufficient for many kinds of 
experiments with short timescales.  

For longer simulations, it is better to use Multiwell to determine individual rate constants 
and then use those rate constants in an elementary reaction mechanism, which can be solved 
using a suitable stiff differential equation code. One such code is KINTECUS, which was 
designed for chemical kinetics and is free of charge for users at academic institutions (available 
from www.kintecus.com). 

Unimolecular Reactions 
In general, the initial energy distribution assumed in the simulation must relax to the 

steady-state distribution. The relaxation time, which depends on the initial energy distribution, is 
minimized when the assumed initial energy distribution is most similar to the steady-state 
distribution. For example, if the pressure is high enough so that the reaction is near the high 
pressure limit, the relaxation time will be minimal if the initial energy distribution is assumed to 
be thermal (THERMAL). Generally, the initial transient (when the initial distribution is relaxing to 
the steady-state distribution) is quite manageable when using an initial energy distribution with 
average energy close to the reaction critical energy. The final steady state distribution does not 
depend on the particular choice of the initial distribution, whether it is a delta function (DELTA), 
thermal distribution (THERMAL), or chemical activation distribution (CHEMACT). 

The simulation must be run for a simulated time that is sufficient for steady state to be 
achieved and for the rate constant to be determined. If the rate constant is to be determined by 
plotting ln(fraction) vs. time (see Section 10.4), then plot initially will be non-linear during the 
transient period when steady state is being established, and subsequently will become linear with 
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slope equal to the desired rate constant. The simulation must be long enough to enable 
determination of the slope of the straight line portion. 

Chemical Activation or Recombination Reactions 
When simulating chemical activation or recombination reactions, one should run the 

simulations long enough to satisfy two criteria:  

a) The average energy of a product molecule (C) is well below any of its reaction 
thresholds (also remember that the distribution of internal energy extends well above the 
average) 

b) The yield of C becomes independent of time (when time-scale separation is sufficient). 
It is best to carry out some preliminary calculations (using a smaller number of trials) to 
determine the time duration (or number of collisions) that will be needed for the excited species 
to be deactivated sufficiently. At low temperatures, this may require only a few dozen collisions, 
but at high temperatures it may require several hundred. 

10.7 How to deal with Barrierless Reactions 
Treating barrier-less reactions is more complicated than reactions that have intrinsic 

energy barriers. There are several choices of methods. Generally, there is a trade-off between 
ease of use and predictive accuracy. If the method is not being used to predict rate constants, but 
is instead being used to fit experimental rate constants, then the simpler methods are usually 
sufficient. For all of the methods, vibrational and rotational constants are usually obtained from 
quantum chemistry calculations. 

 
In order, starting with the best (and most difficult) method: 
1. Microcanonical variational transition state theory: not an automatic feature in Multiwell, but 
external data files created by other codes can be used as input. 
2. Canonical transition state theory, but using the vibrations and rotations in a microcanonical 
model: CTST is implemented in THERMO; the same transition state parameters can be used in 
DENSUM  to generate sums and densities of states.  

3. Hindered Gorin model: see Index of this User Manual. 
4. Inverse Laplace transform method: a built-in option in MULTIWELL (key word ILT) and 
should always be tried first. 
 
Methods #2 to #4 can be employed relatively easily in Multiwell. Typically, #3 and #4 are used 
empirically by fitting a known (or estimated) canonical rate constant at a given temperature. 
Method #2 can also be used in that way, but can also be used to estimate rate constants, based on 
quantum chemistry calculations.  
 
Several applications of these methods are described briefly in a recent review article.83  
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11. Some Questions and Answers 
(Most of the answers were written by JRB.) 

1. QUESTION: Every molecule has a 2 dimensional external inactive rotor and an external 
active rotor (the K-rotor). I can see where the external inactive rotor goes but I'm not sure 
about the external active rotor.  

ANSWER: The parameters "MolMom" on line #8 and "RR" on line #15 of the data file 
are moments of inertia for the 2-dimensional external (inactive) rotors for the reactant and  the 
transitions state, respectively. The external active rotor is included with the other degrees of 
freedom in the density and sum of states calculation. Therefore it is included in the data file for 
SumDen. For example, O3 (ozone) has 3 vibrations and 3 rotations. The SumDen data file should 
include 4 degrees of freedom: 3 vibrations + 1 rotor (the active external rotation, which I usually 
label the "K-rotor"). The moment of inertia for the remaining 2-D external (inactive) rotor 
appears on line #15. 

 

2. QUESTION: If there is an internal active rotor, do I remove the vibration associated 
with it from the Densum input? 

ANSWER: An internal degree of freedom is either a rotor, or a vibration...not both. Thus, 
if you have a vibrational assignment (from Gaussian, say), you may wish to replace a low 
frequency vibrational mode with a free rotor mode. Then you remove the vibration and insert the 
rotor in its place, so that the number of internal degrees of freedom is preserved. 

 

3. QUESTION: In all your examples you use an energy spacing of 10 cm-1 and when I use 1 
cm-1 the code freezes. Do you recommend using 1 cm-1 and if so should I increase the size of 
the array, which is currently 14000? 

ANSWER: We usually recommend 10 cm-1, because we have found that for most 
systems it gives excellent numerical convergence at room temperature and above, and because 
few thermochemical values are known to better accuracy. In previous work, 25 cm-1 spacing also 
worked very well. If you want to use a smaller grain size, then the arrays should be increased in 
size. In principle, one should always test to make sure that the grain size is small enough so that 
it does not affect the results significantly. 

 

4. QUESTION: In using DenSum, when should one use quantum state counting for rotors 
("qro") and when should one use classical state densities ("rot")? 

ANSWER: As a rough rule of thumb, if the rotational constant is greater than B = 1 cm-1, 
use "qro"; if it is less than 0.1 cm-1, use "rot"; in between, you can try it both ways and then 
decide if the difference will affect your calculations.   If you use "qro" for a case where the 
rotational constant is extremely small, there may be computational problems... this limit has not 
been tested thoroughly … and it would be better to use "rot". 
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5. QUESTION: What will happen if the density of states function is not a smooth, 
continuous function at energies corresponding to the upper half of the double array? 

ANSWER: Subroutine COLSTEP assumes that the density of states is smooth in the 
upper portion of the double array. In general, you should plot the density of states vs. E to 
confirm that the energy dividing the two portions of the double array is high enough so that the 
density of states does not fluctuate more than, say, 5%. If the fluctuations are larger, they will 
cause problems in selecting the step sizes, resulting in anomalously large probabilities of large 
activating steps. 

 

6. QUESTION: Why does my compiler have trouble reading the example data files that 
contain names (CHARACTER CONSTANTS)?  

ANSWER: If your compiler does not accept the CHARACTER CONSTANTS in the 
example data files, enclose the CHARACTER CONSTANTS in apostrophes (') and try again. 
"Free format" (list directed input) is used by the MultiWell suite. Different compilers may 
choose to use different delimiters to separate the input fields in free format. Most compilers use 
commas and spaces, but some also will recognize tabs, returns, linefeeds, and other characters. 
Most compilers will recognize CHARACTER CONSTANTS (e.g. file names and chemical 
species names) when they are contained in apostrophes (e.g. 'xyz'). Other compilers will also 
accept quotes (e.g. "xyz"), or text without any special enclosing delimiters (e.g. xyz).  

 

7. QUESTION: How can the 2-D hindered rotations in loose transition states be handled 
using DenSum? 

ANSWER: There are at least three different ways 2D-hindered rotors for loose transition 
states can be handled by DenSum. The first is by using the restricted Gorin prescription of Smith 
and Golden44 (see Benson's discussion63 of the Hindered Gorin Model), which is based on a 
modified version of the Gorin Model.84 The second is to replace the restricted rotor formulation 
with one based on particle-in-a-box. The third is to use two 1-D hindered rotors (implemented in 
DenSum) instead of one 2-D hindered rotor (2-D hindered rotors are not implemented in 
DenSum).  

Smith and Golden44 use a "hindrance parameter" to modify the moment of inertia of a 2-
D free rotor: the Hindered Gorin Model. They find the value of the hindrance empirically by 
varying it until they achieve a fit with experimental rate constant data. In my opinion, a potential 
drawback of the Smith and Golden approach is that the rotor model has no zero point energy, and 
restricting the range of rotational motion results in a model that is more like a particle-in-a-box, 
which has a finite zero point energy. It is for this reason that I added the particle-in-a-box degree 
of freedom type to DenSum. The zero point energy is important because of the role it plays in 
isotopic reactions. To use particle-in-a-box energy levels (instead of free rotor levels), one can 
empirically vary the "frequency" parameter until agreement with experiment is achieved, just as 
done by Smith and Golden.  

The third alternative is to use two 1-D hindered rotors for each 2-D internal rotation. 
Here, the moment of inertia can be used directly in DenSum and the hindrance potential is then 
varied until agreement with the rate constant data is achieved. I've done a few brief tests of this 
approach and it seems to work well. The use of an actual hindered rotor is attractive to me, 
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because it seems more physically realistic (one of these days we'll investigate this using quantum 
chemical calculations). The drawback is that state degeneracies may not be calculated correctly.  

I don't know if there is a significant difference among rate constants calculated using the 
methods described above. Each of the methods is probably quite adequate in fitting almost any 
experimental data (a detailed comparison of the methods would be quite interesting). However, 
making predictions for temperatures where no experimental data are available requires 
formulation of an ad hoc model for hindrance as a function of temperature.  Jordan, Smith, and 
Gilbert85 have formulated such a model (based on free rotors) and have tested it for a few cases; 
it is possible that their method could be used with Densum. The Marcus and Wardlaw 
approach86,87 is more predictive, but only if an accurate multi-dimensional potential energy 
surface is available. Miller and Klippenstein88 have used VariFlex software,89 which implements 
an extended version of the Marcus-Wardlaw approach. 
 

8. QUESTION: Why is the output "noisy" and what is the meaning of the columns labeled 
"+/-error"? 

ANSWER: Multiwell works by carrying out stochastic trials, each of which is a random 
walk governed by the physics of the reaction system. In each trial, one or more wells may be 
"visited' during the random walk and the random walker will be found in a well or reaction 
product at the end of the trial. Multiwell carries out stochastic trials one at a time and sums up 
the results. But it is convenient to discussed the summed result as if a whole "swarm" of random 
walkers was released at the same time... an equivalent procedure. During a set f trials, each of the 
time steps records a "snapshot" of the number of walkers in each well or product set at the instant 
of the time step. The fractions are based on these snapshots.  

For a set of, say, N=100 stochastic trials, there are 100 random walkers. If only one 
random walker out of the whole set is in a well at the time of a snapshot, then the corresponding 
fraction is 0.01. If 37 are in the well, then the fraction is 0.37. The smallest possible non-zero 
fraction (greater than zero) is equal to 1/N. Furthermore, for a finite number of stochastic trials, a 
statistical error is associated with each fraction. The estimated statistical error (specifically, 1 
standard deviation) is reported by multiwell in the columns labeled "+/-Error". As the number of 
stochastic trials is increased, the smallest non-zero fraction decreases and the statistical error 
decreases. Thus changing the number of trials will produce small changes in the fractions... 
changes that should be consistent with the actual statistical fluctuations. (The theory behind the 
estimated statistical errors is presented in the Appendix: section A.3.2 of the User Manual.) 

When carrying out longer trials, the last "snapshot" occurs at a later time and the fraction 
recorded by the final snapshot (reported in output file multiwell.sum) may vary with time. Even 
if equilibrium has been achieved and no further time variation is expected, the stochastic "noise" 
(i.e. statistical errors) associated with the finite number of stochastic trials may be observed, but 
it should be consistent with the estimated statistical errors.  

It is not possible to completely eliminate the stochastic noise for a finite number of trials. 
You should decide what level of noise is tolerable... i.e. what statistical precision is needed... and 
set the number of trials accordingly. A very large number (millions) of stochastic trials may be 
needed to obtain high precision results for a reaction product that is produced with a very small 
fractional yield. The required computer time is proportional both to the number of trials and to 
the length of simulated time (see section A.3.2). As a result, certain simulations are simply not 
feasible or creative alternative approaches must be taken.  
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Appendix. Theoretical Basis 
Much of this Appendix is based on an expanded and corrected version of the paper 

originally published in the International Journal of Chemical Kinetics: J.R. Barker, Multiple-
well, multiple-reaction-path unimolecular reaction systems. I. MultiWell computer program 
suite. Int. J. Chem. Kinetics, 33, 232-45 (2001). 

A.1. Introduction 
Here, the theoretical basis for MultiWell is summarized. Inevitably, various 

approximations and assumptions must be adopted due to computational limitations and to the 
absence of physico-chemical knowledge. The numerical approximations are described so that 
program users can better assess MultiWell's limitations and strengths. The principal assumptions 
made in formulating the master equation are reviewed.  

In the next section, the master equation is described formally. In subsequent sections, the 
stochastic methodology is described along with a brief discussion of some of the merits and 
limitations of the hybrid master equation approach relative to other methods. Methods for 
computing microcanonical unimolecular reaction rates and energy transfer step sizes are 
described, followed by a description of various initial conditions that can be selected as options. 
Finally, the calculation input and output are outlined. 

A.2. The Active Energy Master Equation 
The current version of MultiWell is based on the one-dimensional master equation, in 

which the active (randomizable) internal energy is modeled, but it is planned that future 
extensions will explicitly include angular momentum (the two-dimensional master equation90-98). 
The master equation provides the fundamental theoretical basis for modeling systems in which 
both energy transfer and chemical reaction can occur.1,16,18,31,68 It is comprised of a set of coupled 
integro-differential equations that describe the rates of production and loss of chemical species at 
specified energies. 

A.2.1 Internal Energy and Active Degrees of Freedom 
Unless slow intramolecular vibrational energy redistribution (IVR) is specified, the 

internal energy E is always assumed to be fully randomized among the active degrees of 
freedom. The internal energy for a particular species (stable molecule or transition state) includes 
the energy (measured from the zero point energy; see Figure 0) that resides in the internal modes 
(vibrations, torsions, and internal rotations) and an active external rotation. Nonlinear polyatomic 
species have three external rotational degrees of freedom characterized by moments of inertia IA, 
IB, and IC. The usual pragmatic approach16,18 is to assume the molecule can be approximated as a 
symmetric top with two of the moments of inertia equal to one another (IB = IC), producing a 
degenerate two-dimensional external rotation. The third external rotor is associated with the 
symmetric top figure axis and is sometimes termed the K-rotor. The K-rotor is assumed to 
exchange energy freely with the other internal degrees of freedom, while the degenerate two-
dimensional external rotation is assumed to be inactive.16,18,31,68,99 See Section 9.4 of this Manual 
for more discussion. (More sophisticated treatments of rotations can be utilized in the present 
version of MultiWell by calculating specific rate constants (k(E)) externally and then providing 
them in data files read by MultiWell.) 
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Figure 0. Energy schematic. The active energy E is measured from 
the zero point energy of the reactant well. The critical energy E0 is 
the zero point energy difference between the transition state and 
the reactant well. 

 

A.2.2 Sums and Densities of States 
The MultiWell suite of computer codes includes DenSum, which utilizes the Stein-

Rabinovitch10 version of the Beyer-Swinehart algorithm11 for exact counts of states for species 
comprised of separable degrees of freedom. The present version of DenSum can accommodate 
harmonic oscillators, Morse oscillators, and free rotors. The K-rotor is included with the internal 
degrees of freedom when calculating the sums and densities of states. There are two options for 
the treatment of rotations. The usual option is to use the convolution method developed by 
Astholz et al.,30 which is computationally efficient and accurate for rotors with small rotational 
constants. The second method is to use exact counts of rotational states. The second method is 
preferred if the rotational constant is larger than ~1 cm-1. DenSum produces an output file that is 
subsequently used as an input file by MultiWell. The inactive two-dimensional external 
rotation is specified in the general MultiWell data file. 

Hindered Internal Rotations 
In the MultiWell Program Suite, torsional modes are assumed to be separable from other 

motions (i.e. translations, vibrations, external rotations and other internal rotations) and are 
treated as one-dimensional quantum hindered internal rotations. The Schrödinger equation for 
such 1-D torsional motions is solved as described in the Technical Notes section of this manual. 

The 1-D torsion coordinate is defined as χ, the torsional dihedral  angle (0≤χ<2π). Users 
must supply the potential energy V(χ) and the torsion rotational constant function Bhr(χ) (or the 
corresponding moment of inertia function I(χ)). Potential energies V(χ) and molecular 
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geometries can be computed at discrete values of χ by using any of the many available quantum 
chemistry codes, such as Gaussian,56 Molpro,61 or CFour.57 The results for V(χ) can be fitted to a 
suitable truncated Fourier series. Program lamm, a module in the MultiWell Program Suite, is 
intended to help users compute Bhr(χ), based on the output from quantum chemistry programs 
(see Chapter 8 of this manual). 

A.2.3 Master Equation for the Vibrational Quasi-Continuum 
Because of the difficulties encountered in solving the 2-D master equation, it is usually 

reduced to 1-D by making simplifying assumptions, and then solving numerically by one of the 
standard methods.1,22,100-102 However, Marcus showed that the microcanonical RRKM specific 
rate constant depends on the active energy E, i.e. the energy not constrained by conservation of 
angular momentum. Thus angular momentum has an effect that must be taken into account for 
accurate results. The first approach to this problem also originated with Marcus,103 who invoked 
the concept of adiabatic rotation to make "centrifugal corrections". Marcus' approach has been 
reviewed by Waage and Rabinovitch104 and is found in standard monographs.18,32,68 In this 
approach, the RRKM specific rate constant k(Et,J), which is written as depending on total energy 
Et  and the angular momentum quantum number J is reduced to an approximate k(E) (at a given 
temperature), where E is the active energy of the reactant: all explicit reference to angular 
momentum quantum number J has been removed from the 2DME, which has thus been reduced 
to a 1DME. This approach is outlined in the following. 

At high vibrational energies, a quasicontinuum of vibrational states exists and 
intramolecular vibrational redistribution (IVR) is rapid. Experiments show that IVR is slow at 
low energy, exhibits multiple time scales, and becomes rapid at energies where the vibrational 
state density is of the order of 102–103 states/cm-1.105 At these state densities, some vibrational 
states overlap significantly within their natural widths as governed by infrared spontaneous 
emission rates. At state densities greater than ~107 states/cm-1, most states are overlapped within 
their natural widths. The onset of "rapid" IVR is a convenient marker for the onset of the 
vibrational quasicontinuum. However, this criterion leaves some uncertainty because IVR 
exhibits multiple time constants and thus some modes remain isolated even at higher vibrational 
state densities.105  

A shorter version of the following derivation of centrifugal corrections has been reported 
elsewhere.106 

In the vibrational quasicontinuum, individual quantum states cannot be resolved and the 
master equation can be written as a function of either of two equivalent sets of independent 
variables: Et,J or E,J. In terms of active energy E and angular momentum quantum number J, it 
takes the following form 18,68,100,102: 

  

dN ( ′E , ′J ,t)
dt

= ′F ′E , ′J ,t( )+ R ′E , ′J ; E, J( ) N E, J ;t( )dE
0

∞

∫
J
∑

− R E, J ; ′E , ′J( ) N ′E , ′J ,t( )dE
0

∞

∫
J
∑ − ki ′E , ′J( )N ′E , ′J ,t( )

i=1

channels

∑
 (2.3-1) 

where the primed E' and J' refer to the current state and the unprimed quantities refer to a 
different state of the excited species, which is undergoing reaction. In Eq. 2.3-1, N(E',J',t)dE' is 
the concentration of a chemical species with active energy in the range E' to E'+dE'; R(E,J;E',J') 
is the (pseudo-first-order) rate coefficient for collisional energy transfer from initial energy E' to 
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energy E and quantum number J' to J; F'(E',J',t)dE' is a source term (e.g. thermal, chemical, or 
photo activation, or isomerization); and ki(E',J') is the unimolecular reaction rate constant for 
molecules at energy E' and rotational quantum number J' reacting via the ith reaction channel. 

To reduce the 2DME to a 1DME, we first assume that the rotational population 
distribution describing the adiabatic rotations is always Boltzmann: 

  Pe J( ) = QJ
−1gJ exp −EJ / kBT( )  (2.3-2a) 

where gJ = 2J+1 for a 2-D symmetric top (which is typically assumed; see Section 9.4 of this 
Manual) and other forms for 1-D and spherical tops; the rotational energy EJ and the rotational 
partition function QJ for the adiabatic rotor(s) are given by Eq. 2.3-2b and 2.3-2c, respectively: 

  EJ = BJ J +1( )  (2.3-2b) 

  
QJ = gJ exp −EJ / kBT( )

J
∑  (2.3-2c) 

The constant B is the rotational constant. By using these expressions, the concentrations can be 
written as 

  N E, J ,t( ) = N E,t( )Pe J( )  (2.3-3) 

In the same spirit, we assume the source function produces the same rotational distribution: 

  ′F ′E , ′J ,t( ) = F ′E ,t( )Pe J '( )  (2.3-4) 

Although recent trajectory calculations show that the assumption is probably not 
accurate,27) we follow Smith and Gilbert92 and Miller et al.101 in adopting the pragmatic 
assumption  that the collision rates in Eq. 1 can be written in a separable form: 

  R E, J ; ′E , ′J( ) = R E, ′E( )Pe J( )  (2.3-5) 

where R(E,E') has no dependence on angular momentum and can be expressed as the product of 
the total vibrationally inelastic collision frequency (ω) multiplied by the "collision step-size 
distribution", P(E,E'), which expresses the probability that a molecule initially in the energy 
range from E' to E'+dE' will undergo an inelastic transition to the energy range E to E+dE: 

R(E, ′E )dE= R(E, ′E )dE
0

∞

∫
R(E, ′E )dE

R(E, ′E )dE
0

∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

, (2.3-6a) 

  =ω P(E, ′E )dE  (2.3-6b) 

The first factor on the right hand side of Equation (2.3-6a), the integral over the rates of 
all inelastic transitions from initial energy E' can be identified with the frequency of inelastic 
collisions, ω, which may depend on the initial active energy E'. Usually, the collision frequency 
is calculated from the expression ω = kc[M], where kc is the bimolecular rate constant for 
inelastic collisions and [M] is bath gas concentration. The second factor (in curly brackets) on the 
right hand side of Equation (2.3-6a) is P(E,E')dE. It is important to emphasize that the 
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factorization of R(E,E') in Equation (2.3-6) is merely for convenience and that kc and P(E,E') 
never occur independently of one another. Furthermore, P(E,E') is only a proper probability 
density function when ω is exactly equal to the inelastic collision rate constant. With this 
assumption, P(E,E') is normalized: 

  
P(E, ′E )dE

0

∞

∫ = 1  (2.3-7) 

Note that collision step-size distributions for activating and deactivating collisions are 
connected via detailed balance: 

  

P(E, ′E )
P( ′E , E)

= ρ(E)
ρ( ′E )

exp − E − ′E
kBTtrans

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 , (2.3-8) 

where ρ(E) is the density of states at active energy E, Ttrans is the translational temperature, and 
kB is the Boltzmann constant. The relationships among P(E,E'), kc, and the normalization integral 
are further discussed below. 

Using these definitions, we obtain 

  R E, J ; ′E , ′J( ) =ωP E, ′E( )Pe J( )  (2.3-9) 

Smith and Gilbert showed that the master equation can be solved approximately when using this 
separable form. In MultiWell, this separable form is adopted pragmatically in order to obtain a 
semi-analytical solution to the master equation. (Miller and coworkers have further generalized 
the function postulated by Smith and Gilbert,92 and the details may be found in their 
papers.101,102) 

After combining Eq. 2.3-1-9, we obtain 

  

dN ( ′E ,t)
dt

Pe ′J( ) = F ′E ,t( )Pe ′J( ) + Pe J( )ωPe ′J( ) P ′E ; E( ) N E;t( )dE
0

∞

∫
J
∑

− N ′E ,t( )Pe ′J( ) Pe J( )ω P E; ′E( ) dE
0

∞

∫
J
∑ − N ′E ,t( )Pe ′J( ) ki ′E , ′J( )

i=1

channels

∑
 (2.3-10) 

In this expression, the sums over J are equal to unity because Pe(J) is normalized. Every term 
contains the factor Pe(J'). By summing every term in Eq. 2.3-6 over J' and noting that the sum 
equals unity in each term except the last, we obtain 

  

dN ( ′E ,t)
dt

= F ′E ,t( )+ω P ′E ; E( ) N E,t( )− P E; ′E( ) N ′E ,t( )⎡⎣ ⎤⎦dE
0

∞

∫

                             − N ′E ,t( ) ki ′E( )
J

i=1

channels

∑
 (2.3-11a) 

where <ki(E')>J is the RRKM specific rate constant, averaged over the rotational energy 
distribution: 

  
ki ′E( )

J
= Pe ′J( )ki ′E , ′J( )

′J =0

′Jmax

∑  (2.3-11b) 



 

- 119 - 

The upper limit of the summation (J'max) in Eq. 2.3-11b corresponds to the largest angular 
momentum quantum number for which the well still exists. Eq. 2.3-11 summarizes the general 
form of the 1-D master equation treated by MultiWell. 

The averaging of ki(E',J') over the rotational energy distribution may be carried out as 
follows, using the variables defined in Fig. 2.3-1. The RRKM specific rate constant for a specific 
J' can be written103 

  
k ′E , ′J( ) = L‡

h
G‡ E+ , ′J( )
ρ ′E , ′J( )  (2.3-12) 

where L‡ is the reaction path degeneracy, h is Planck's constant, G‡(E+,J') is the sum of states of 
the transition state as a function of the active energy E+ in the transition state, and ρ(E',J') is the 
density of "vibrational" states of the reactant when the rotational quantum number is J'. The 
various energies are related as follows (see Fig. 2.3-1): 

  ′E + EJ = E+ + E0 + E+
J  (2.3-13a) 

or 

  ′E = E+ + E0 + ΔEJ  (2.3-13b) 

where EJ and EJ
+ are the energies of the adiabatic rotations in the reactant and in the transition 

state, respectively, and ∆EJ = EJ
+-EJ. The rotational energies are given by Eq. 2.3-2b and by the 

analogous equation: 

  EJ
+ = B+J J +1( )  (2.3-14) 

Using these relationships, ki(E',J') can be written 

  
k ′E , ′J( ) = L‡

h
G‡ ′E − E0 − ΔEJ( )

ρ ′E , ′J( )  (2.3-15) 

From Eqs. 2.3-2b and 2.3-14  it is apparent that EJ = (B/B+)EJ
+, and ∆EJ can be written as a 

function of EJ
+ alone: ∆EJ = (1−B/B+)EJ

+.  
For reactions involving bond fission, the rotational constant B+ for a rigid rotor transition 

state is smaller than that for the reactant and ∆EJ < 0. As the angular momentum quantum 
number J' increases, the quantity (E0 - ∆EJ) approaches zero. In other words, the reactant well 
and the effective critical energy for reaction both vanish when J' is large enough: J'max is the 
largest value of J' for which the well still exists. For J' > J'max, k(E',J') is not defined. When B+ ≤ 
B for rigid rotors, J'max = ∞. 

The rate constant must now be averaged over the rotational population distribution: 

  
k ′E , ′J( )

J
= QJ

−1 k ′E , ′J( )gJ
′J =0

′Jmax

∑ exp −EJ / kBT( )  (2.3-16a) 

From the definition of ∆EJ, this expression can also be written 

  
k ′E , ′J( )

J
= QJ

−1 k ′E , ′J( )gJ
′J =0

′Jmax

∑ exp − EJ
+ − ΔEJ( ) / kBT⎡

⎣
⎤
⎦  (2.3-16b) 
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Equations 2.3-16a and 2.3-12b are suitable for directly averaging over the rotational 
quantum number. Care must be taken however, because the rate constant is only defined at 
energies E' ≥ (E0+∆EJ). Because ∆EJ ≤ 0, the reaction threshold may be significantly lower in 
energy than E0, the critical energy for J = 0. 

The ad hoc approximate functions postulated by Smith and Gilbert92 and by Miller and 
coworkers101,102 are almost certainly not accurate.27 Thus we feel that elaborate treatments cannot 
be justified and have instead adopted the following pragmatic approach.  

The active degrees of freedom may include one or more external rotations, which, to a 
good approximation, may be treated as separable (see Section 9.4). Typically, for a prolate 
symmetric top, the K-rotor is regarded as active. For a rigid rotor, the K quantum number is a 
"good" quantum number and is restricted to the range from −J to +J. However, a highly excited 
molecule is hardly rigid and K is not conserved, although it may exhibit a "propensity" to be 
conserved for some period of time. As a result, it is commonly assumed that the K-rotor of a 
non-rigid top can exchange energy freely with the internal degrees of freedom: i.e. the K-rotor is 
usually assumed to be an active degree of freedom.  

It is common practice to allow K to vary freely, except for conservation of energy, and 
treat the K-rotor as just one more separable degree of freedom when computing densities of 
states.16,18,31,32 In fact, treating the K-rotor in this way may be more accurate than restricting K to 
the range from −J to +J.107 This separable-rotors approximation66 is discussed in Section 9.4.) 
However, there always exist 2J'+1 states with the same value of J', even for a completely 
asymmetric top. Thus neglecting the restriction on K has the effect of increasing the density and 
sum of states slightly, but this error is insignificant except for molecules with small rotational 
constants at very low temperatures. 

Here, it is pragmatically assumed that the K-rotor is active and the K quantum number 
has no restrictions other than conservation of energy. As a result, the approximate density of 
states of the reactant molecule has no explicit dependence on the J quantum number: ρ(E',J') is 
replaced by ρ(E') in Eq. 2.3-16 and the average specific rate constant can be written 

  
k ′E , ′J( )

J
=

L‡ G‡ ′E − E0 − ΔEJ( )
J

hρ ′E( )  (2.3-17a) 

where the averaged sum of states is given by 

  
G‡ ′E − E0 − ΔEJ( )

J
= 1

QJ

G‡ ′E − E0 − ΔEJ( )gJ exp −EJ / kBT( )
′J =0

′Jmax

∑  (2.3-17b) 

where J'max is the largest value of J' for which k(E',J') is defined. 
Another pragmatic approximation is useful. Marcus showed that by substituting an 

average value <∆EJ> =  (1−B/B+)<EJ
+> in place of ∆EJ in Eq. 2.3-13, a useful approximate 

expression is obtained,103 which does not retain any explicit dependence on the rotational state J': 

  
ka ′E( ) = L‡

h
G‡ ′E − E0 − ΔEJ( )

ρ ′E( )  (2.3-18) 

where the subscript "a" was used by Marcus to denote the approximate form. For present 
purposes, it is convenient to use the same approximation in the exponential factor in Eq. 2.3-16b, 
giving 
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k ′E( )

J
= ka ′E( )exp ΔEJ / kBT( )QJ

−1 gJ
′J
∑ exp −EJ

+ / kBT⎡⎣ ⎤⎦  (2.3-19) 

The remaining sum over J' in Eq. 2.3-19 can be recognized as QJ
+, the rotational partition 

function for the transition state. Marcus found  <EJ
+> = lkBT/2 (where l is the number of 

adiabatic rotors), the average rotational energy in the transition state, by weighting the average 
according to the reactive flux103,108 (also see the discussion in Robinson and Holbrook31 and in 
Holbrook et al.32). Using this value of  <∆EJ> ≈ (1−B/B+)lkBT/2 = (1− I+/I) lkBT/2, where I and 
I+ are the moments of inertia for the adiabatic rotor in the reactant and the transition state, 
respectively.103 The final result can be written as  

  
k ′E( )

J
= ka ′E( )QJ

+

QJ

exp ΔEJ / kBT( )  (2.3-20a) 

or 

  
k ′E( )

J
= ka ′E( ) B

B+

⎛
⎝⎜

⎞
⎠⎟

l /2

exp
l
2

1− B
B+

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

 (2.3-20b) 

or 

  
k ′E( )

J
= ka ′E( ) I +

I
⎛
⎝⎜

⎞
⎠⎟

l /2

exp
l
2

1− I +

I
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
 (2.3-20c) 

where the ratio of the (classical) rotational partition functions has been replaced by the ratio of 
the rotational constants or moments of inertia, and l is the number of adiabatic rotors. Usually it 
is assumed that l = 2. 

These simplified forms perform well in master equation simulations, although the energy 
transfer parameters may differ to some extent from other treatments. These possible differences 
are generally not considered further, because no current master equation treatment of energy 
transfer is known to be correct and because energy transfer parameters and collision step-size 
distributions generally are not known from other sources, but are simply used as empirical fitting 
parameters. 

High Pressure and Low Pressure Limits: k∞ and k0 
Prior to the release of Multiwell-2011.1, we became aware of a problem with the 

implementation of the centrifugal factors in MultiWell. David Golden pointed out that at very 
high temperatures, where it is possible to simulate both a recombination reaction and its reverse 
dissociation, the two rate constants were inconsistent with each other. This discrepancy was 
traced to the centrifugal corrections. This problem has been corrected, and a discussion of the 
current and prior versions of k0 and k∞ can be found in Section 9.10 of this User Manual. 

The high pressure rate constant is the average rate constant at pressures high enough so 
that differences of the actual population distribution from the thermal Boltzmann distribution are 
negligible. The thermal Boltzmann energy distribution for reactant A is 

  BA( ′E ,T ) = QA
−1ρA ′E( )exp − ′E / kBT( )  (2.3-21a) 

where the partition function QA is  
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QA = ρA ′E( )exp − ′E / kBT( )d ′E

0

∞

∫  (2.3-21b) 

The average rate constant is therefore 

  
k∞(T ) = 1

QA

ka ′E( )
J
ρA ′E( )exp − ′E / kBT( )d ′E

ε0
′

∞

∫  (2.3-22a) 

or 

  
k∞(T ) = 1

QA

QJ
+

QJ

ka ′E( )ρA ′E( )exp − ′E − ΔEJ( ) / kBT⎡
⎣

⎤
⎦d ′E

ε0
′

∞

∫  (2.3-22b) 

By transforming the variable of integration from E' to E+ (i.e. by replacing ∆EJ in Eq. 2.3-7b 
with the average value, <∆EJ> and obtaining E+ = E'−E0−<∆EJ>) and changing the limits of 
integration, the resulting expression for k∞ is the same as canonical TST (Eq. 4.30 of Robinson 
and Holbrook,31 and Eq. 3.30 in Holbrook et al.32 at the high pressure limit). 
 
Comparison with Other Models 

Equation 3.30 in Holbrook et al.32 and Eq. 4.30 in Robinson and Holbrook31 are based on 
the strong collision assumption, in which every collision results in producing a canonical active 
energy distribution. In this section, the strong-collision rate constant is derived using the 
rotationally averaged <k(E')>J. For convenience, concentration is written as the product of a 
normalized energy distribution, y(E',t), and a time-dependent total concentration, N(t):  

  N ′E ,t( ) = N t( ) y ′E ,t( )  (2.3-23) 

where N(t) decays with time and the energy distribution y(E',t) is normalized at all times. With 
this substitution, the LHS of Eq. 2.3-5 becomes 

  

dN ′E ,t( )
dt

= y ′E ,t( ) dN t( )
dt

+ N t( ) dy
dt

 (2.3-18) 

In the absence of chemical reaction and input flux, and given enough time, the population 
distribution relaxes to steady state and dy/dt = 0. Furthermore, the unimolecular rate constant (for 
channel i) is defined at steady state: kuni,i  = −N-1dN/dt. Thus, after simplification  the steady-state 
master equation can be written 

  

− y ′E( )kuni,i =
F ′E ,t( )

N t( ) + R ′E ; E( ) y E( )dE
0

∞

∫

                                              − y ′E( )dE R E; ′E( )dE
0

∞

∫ + ki ′E( )
J

i=1

channels

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.3-21) 

When F(E',t) = 0, Eq. 2.3-21 can be solved for the steady-state population distribution y(E'): 
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y ′E( ) =
R ′E ; E( ) y E( )dE

0

∞

∫

R E; ′E( )dE
0

∞

∫ + ki ′E( )
J

i=1

channels

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− kuni,i

 (2.3-22) 

To obtain kuni,i with the strong-collider approximation, we use the following identity: 

  
R E; ′E( ) = kc[M ]

ρ E( )exp −E / kBT( )
Q2 T( )  (2.3-23) 

where the rate of energy transfer is expressed as the product of a collision rate constant kc and 
collider bath concentration [M], multiplying a thermal canonical energy distribution, which is 
normalized by the partition function. Note that according to the strong-collider assumption, the 
energy transfer rate has no dependence on the energy prior to collision. With this substitution, 
the integrals in eq. 2.3-22 can be evaluated readily: 

 

  
R ′E ; E( ) y E( )dE

0

∞

∫ = kc[M ]
ρ ′E( )exp − ′E / kBT( )

Q2 T( ) y E( )dE
0

∞

∫  (2.3-24a) 

  
= kc[M ]

ρ ′E( )exp − ′E / kBT( )
Q2 T( )  (2.3-24b) 

  
R E; ′E( )dE

0

∞

∫ =
kc[M ]
Q2 T( ) ρ E( )exp −E / kBT( )dE

0

∞

∫ = kc[M ]  (2.3-25) 

Thus eq. 2.3-22 becomes 

  

y ′E( ) = kc[M ]

kc[M ]+ ki ′E( )
J

i=1

channels

∑⎡

⎣
⎢

⎤

⎦
⎥ − kuni,i

ρ ′E( )exp − ′E / kBT( )
Q2 T( )  (2.3-26) 

Except at extremely low internal energies, the magnitude of kuni is much smaller than the 
rotationally averaged <k(E')>J and hence can be neglected in the denominator. The reaction rate 
at active energy E'  is given by the product of y(E') and <k(E')>J. After integrating over all 
internal energies greater than E0' = E0 + <∆EJ>, the reaction critical energy, we obtain the strong-
collider unimolecular rate constant for channel i: 

  

kuni,i =
kc[M ] ki ′E( )

J

kc[M ]+ ki ′E( )
J

i=1

channels

∑⎡

⎣
⎢

⎤

⎦
⎥

ρ ′E( )exp − ′E / kBT( )
Q2 T( ) d ′E

E0+ ΔEJ

∞

∫  (2.3-27) 

Low pressure limit: 
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klow,i =

kc[M ]
Q2 T( ) ρ ′E( )exp − ′E / kBT( )d ′E

E0+ ΔEJ

∞

∫  (2.3-28) 

High pressure limit: 

  
k∞,i =

1
Q2 T( ) ki ′E( )

J
ρ ′E( )exp − ′E / kBT( )d ′E

E0+ ΔEJ

∞

∫  (2.3-29) 

 

A.2.4 Multiple Species (Wells) and Multiple Reaction Channels 
Here we consider chemical species that can be identified with local minima (wells) on the 

potential energy hypersurface. These species are distinct from transition states, which are located 
at saddle points. In MultiWell, each well is assigned an arbitrary index for identification and 
reactions are conveniently labeled with two indices: one to designate the reactant and the other to 
designate the product. For simplicity in notation, one or more of these indices are omitted in 
some of the following discussion. 

A master equation such as Equation (2.3-1) can be written for each well and the equations 
are coupled via the chemical reaction terms. Each reaction channel is associated either with 
another well, or with fragmentation products. Each isomerization is reversible and the transition 
state is the same for the corresponding forward and reverse reactions. In principle, the existence 
of isomers leads to splitting of vibrational levels, as in the inversion doubling of ammonia, but if 
tunneling is negligible, the wells can be considered independently.109 Thus each well has its own 
vibrational assignment, molecular structure, and corresponding density of states. 

Two technical problems arise when using an energy grained master equation16,18,31,32,68 to 
simulate multiple-well systems. First, the number of coupled differential equations can grow 
prohibitively as the energy grain size (∆Egrain) is reduced, making the numerical solution very 
difficult or impossible. Second, because each well has its own zero of energy and reaction 
threshold (critical) energies, it is difficult to match the energy grain boundaries. The reaction 
threshold energies for forward and reverse reactions are tied to one another. For accurate 
numerical results it is necessary to match the energy grains of the coupled wells. The matching 
of energy grains at one reaction threshold may lead to mis-matches at other thresholds and to 
artificially shifted energies of the wells, relative to one another. These energy shifts produce 
anomalous results for large grain sizes. This problem can be neglected if the energy grains are 
very small, but small energy grains lead to very large sets of coupled equations. In all cases, the 
calculations should be repeated with successively smaller energy grains until the results are 
independent of ∆Egrain: convergence must be achieved. 

When a continuum master equation is used, energy mis-matching and anomalous shifts 
never create problems. However, the sparse density of states regime at low energies within wells 
and for transition states near reaction thresholds is not well represented by a continuum model. 
This difficulty is minimized in MultiWell by using a hybrid master equation approach. 

A.2.5 Hybrid Master Equation Formulation 
Effectively, the hybrid master equation formulation uses a continuum master equation in 

the quasicontinuum at high vibrational energies, and an energy-grained master equation at low 
energies, where the state density is distinctly discontinuous. This is accomplished by using 
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Equation (2.3-1) for the continuum master equation throughout the entire energy range but 
discretizing the state density, population, and transition rates at low energy. At high energy, 
Multiwell employs interpolation to determine the density of states and specific rate constants 
(k(E)). Values of ρ(E) and k(E) are stored in ordered arrays at specific values of E and 
intermediate values are determined by interpolation. At low energies, ordered arrays of ρ(E) and 
k(E) are stored at smaller energy spacing  (∆Egrain) and interpolation is not used: the array entries 
nearest in energy are utilized directly. The two ordered arrays used for each energy-dependent 
quantity (ρ(E), k(E), etc.) are combined in "double arrays" which are discussed in the next 
section. At all energies, numerical integration is carried out with the trapezoidal rule, which 
introduces an energy grain in the low energy regime (where state densities are sparse), but gives 
good continuum results at high energy (where the state densities are smooth). 

If a stochastic trial (see below) calls for a transition from the continuum space to an 
energy in the discrete space, the energy is aligned with the discrete energy grain. At low energy, 
many energy grains do not contain states (ρ(E) = 0) and transitions are not allowed to those 
states in MultiWell. As a result, population only resides in energy grains that contain states and 
collisional transitions low on the energy ladder can only take place with relatively large energy 
changes, due to the sparse density of states. 

A.2.6 Energy Grain in the Hybrid Master Equation 
Through the use of double arrays, high energy resolution is achieved in densities and 

sums of states at low energy and near reaction thresholds. By default, the double arrays have 500 
elements (the dimensions can be changed, if desired). The low energy portion of the array is 
specified according to ∆Egrain and the number of array elements assigned to the low energy 
portion of the double array. The high energy portion is specified only according to the maximum 
energy. Thus the number of array elements used in the high energy portion and the energy grain 
in the high energy portion both depend on how many array elements remain after assigning the 
low energy portion. The same specifications are used for all double arrays, including arrays for 
densities of states (ρ(E)), sums of states (G‡(E-E0)), specific rate constants (k(E-E0)), etc. The 
discretization of these quantities is the natural result of exact count algorithms. 

An example of a double array for the density of states ρ(E) is shown in Figure 1 for 
benzene (vibrations110 + K-rotor). In this example, the density of states was calculated using an 
energy grain of ∆Egrain = 10 cm-1 and exact counts up to an energy of 85000 cm-1, although only 
energies up to 10000 cm-1 are shown in the figure. In this example, the low energy regime was 
defined as the first 250 elements of a double array and thus covered the range from 0 to 2490 
cm-1. The remaining 250 elements of the double array overlap the low energy portion and cover 
the range all the way from 0 to 85000 cm-1 (the high energy regime) with an energy grain of 
341.4 cm-1. In Figure 1, ρ(E) calculated with ∆Egrain = 10 cm-1 is shown as the thin solid line and 
the double array elements are shown as the solid dots. The upper energy boundary for low 
energy range was chosen to fall within the vibrational quasicontinuum, as evidenced by ρ(E) ≥ 
100 states/cm-1 and by the relative smoothness of the plot of ρ(E). When ρ(E) is sufficiently 
smooth, relatively little error is introduced by interpolating between the double array points. 

In principle, convergence tests should be carried out for each simulation. Tests for 
convergence as ∆Egrain  is reduced reflect several simultaneous effects: the ρ(E) grain size is 
varied for every well, the G‡(E-E0) grain size is varied for every reaction, and the energy range 
covered by the low energy portion of every double array is varied. Because several attributes are 
affected by ∆Egrain, the variation of results with grain size cannot be interpreted precisely without 
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extensive tests. However, as long as the energy range covered by the low energy portion of the 
double arrays is sufficient, smaller grain sizes will produce more accurate results and the results 
are seen to converge at small ∆Egrain, as illustrated in Figure 4 of Reference 23.  

Typical convergence tests23 show that 250 bins with ∆Egrain = 10 cm-1 are usually suitable 
for the low energy portion of the double arrays.  The upper energy bound for the high energy 
portion is typically 85000 cm-1 to 100000 cm-1, depending on the temperature range and 
activation method being simulated. The small grain at every reaction threshold gives accurate 
results for the unimolecular reaction rates. The small grain at low energy within each well gives 
a good representation of the sparse density of states regime in every well. To achieve comparable 
numerical results by the matrix solution68 of an energy-grained master equation for just a single 
well would require finding the eigenvalues of a matrix with 8500×8500 elements...a difficult 
task. The hybrid master equation approach has a distinct advantage in this regard. 

 
Figure 1. Density of states for benzene (including vibrations and one active 
external rotation). Solid line: density of states from exact count (∆Egrain = 10 
cm-1); solid dots: elements of double array (see text for details). 
 

A.3. Stochastic Method 

A.3.1 Gillespie's (Exact) Stochastic Simulation Algorithm 
Gillespie showed that a stochastic method gives the exact solution to a set of ordinary 

differential equations in the limit of an infinite number of stochastic trials.20,21 The algorithm has 
been described in the context of chemical kinetics.1,19,111 If a Markovian system is in a given 
state and can make transitions to other states via a set of transition rate coefficients, then for a 
given step in a stochastic simulation, Gillespie's algorithm gives a prescription for a) finding the 
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duration of the time step and b) selecting the transition from among the choices. This algorithm 
is repeated step-by-step as long as desired and as long as transitions are possible.  

Gillespie's method can be applied to both linear and non-linear systems.19 Equation (2.3-
1) is linear in y(E,t), which leads to a particularly convenient result which is described below. If 
Equation (1) contained non-linear terms to describe energy pooling, for example, the terms 
would contain factors such as the product y(E,t)×y(E',t). To solve this system numerically 
requires using an energy-grained master equation with a swarm of stochastic trials and storing an 
evolving vector of populations as a function of energy. Here, the number of stochastic trials can 
be identified with a number of pseudo molecules that initially are placed in a set of energy 
grains. At each time step, a pseudo molecule is moved from one energy grain to another as 
described by Gillespie and the swarm of pseudo molecules maps out the evolving energy 
distribution. This approach has been used by Veerecken et al.98,112 to simulate unimolecular and 
recombination reactions and it can in principle be extended to non-linear systems. The 
difficulties in this approach are associated with the energy-grained master equation (see above) 
and with the requirement for storage of the entire vector of y(E,t) at every time step. Given the 
current availability of inexpensive computer memory, the latter is not a serious limitation for 
single-well reaction systems. When several wells are involved, the bookkeeping is cumbersome. 
Moreover, the memory requirements of this technique can become prohibitive in the future if the 
one-dimensional master equation is to be extended to two dimensions by explicitly including 
angular momentum. MultiWell is designed so that the future extension to two-dimensions will be 
feasible. 

For linear master equations, a different strategy1 is possible using Gillespie's algorithm. 
Instead of using a swarm of stochastic molecules and storage of y(E,t) at every step, stochastic 
trials are run one at a time and snapshots of E and other variables are stored at convenient time 
intervals. The vector y(E,t) does not need to be stored. A "snapshot" simply records the energy 
and other properties of a single stochastic molecule as it progresses through a stochastic trial. 
The snapshot has no effect on the physics of the trial. Since the system is linear, the averaged 
result of an ensemble of stochastic trials gives the same result as a swarm of stochastic 
molecules. By retaining only the averaged results of the snapshots, the memory storage 
requirements are greatly reduced. 

For a linear master equation, the loss terms can be expressed as first order in y(E,t) with 
first order rate coefficients Aj for k paths. These rate coefficients can be identified with the 
unimolecular rate constants and the collision frequency in Equation (2.3-1). According to 
Gillespie's algorithm, the duration of the next time step is chosen by using the uniform random 
deviate (i.e. random number) r1 :  

  
τ =

− ln(r1)
AT

 (3.1-1a) 

where  

  
AT = Aj

j=1

k

∑  (3.1-1b) 

The transition is selected from among the k paths by using a second random number r2: 
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Aj

j=1

n−1

∑ < r2 AT ≤ Aj
j=n

k

∑  (3.1-2) 

Here, the transition takes place via path n at time t+τ. 
According to Gillespie's algorithm, the time intervals between stochastic steps are chosen 

randomly by Equation (3.1-1a). Thus the progress of the stochastic simulation is monitored via 
snapshots, as mentioned above. If collisional activation or deactivation is the result of a 
transition, then the next stochastic step is calculated using rate coefficients appropriate to the 
new energy. If isomerization to another well is the result of a transition, then the next stochastic 
step is calculated using the first order rate coefficients appropriate to the new well, based on E 
measured from the zero point energy of the new well. The snapshots from many stochastic trials 
are averaged. The results include the time-dependent average fractional populations of the 
isomers, the average internal energy of each isomer,  and fractional yields of the fragmentation 
products, etc. 

The computer time required for any given stochastic simulation depends on Ntrials, the 
simulated time duration, and on the properties of the system that affect AT in Equation (3.1-1b). 
For example, one of the Aj terms is the collision frequency, which is proportional to pressure. If 
the collision frequency is the dominant term in Equation (3.1-1b), then  the average stochastic 
time-step is inversely proportional to pressure and the number of time steps (and the 
corresponding computer execution time) for the given simulated time duration is proportional to 
pressure. Of course, collision frequency is not always the dominant term in Equation (3.1-1b), 
but the same qualitative considerations can help in estimating required computer time. 

Note that the effectiveness of Equation (3.1-2) is limited by the properties of the random 
number generator. The characteristics of various random number generators are discussed 
elsewhere,94,113,114 where many potential pitfalls are described. It is important to use random 
number generators that have been thoroughly tested. Even assuming the random number 
generator produces a sequence that has no serial correlations, the number of random numbers in 
a sequence is limited and this imposes a limitation on the relative magnitudes of the Am terms 
that can be selected according to Equation (3.1-2). For a 32-bit computer, a typical random 
number sequence contains 231-1 ≈ 2.1×109 equally-spaced numbers. Thus if the ratio of 
minimum to maximum values of the rate constants is less than ~0.5×10-9, then the path with the 
smaller rate can never be selected. Thus the random number generator places a rigorous upper 
bound on the dynamic range of rates that can be selected. A more serious limitation, however, is 
that an extraordinarily large number of stochastic trials is required in order to sample rare events 
with useful precision, as discussed in the next section. 

A.3.2 Stochastic Uncertainties 
The precision of the results obtained using stochastic methods depends on the number of 

stochastic trials. In the systems simulated by MultiWell, several species coexist and their relative 
populations sum to unity: 

  
1= f1 + f2 + ...= fi

i=1

species

∑  (3.2-1) 

The standard deviation in the instantaneous relative population of the ith species is the square root 
of the variance calculated according to the multinomial distribution115:  
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σ i =

1
Ntrials

fi 1− fi( )  (3.2-2) 

where fi is the fractional population of the ith species and Ntrials is the number of stochastic trials. 
Note that the standard deviation is reduced as the number of trials increases. Also note that the 
product fi(1-fi) appears in Equation (3.2-2). Thus, the standard deviation is the same when, for 
example, fi=0.01 and when fi=0.99. These standard deviations are calculated and reported by 
MultiWell in its general output. 

A large number of stochastic trials is needed when rare events must be simulated with 
high precision. Suppose that fi = 0.01 and the desired precision corresponds to a relative 
statistical error of 1% (i.e. σi/fi = 0.01). From Equation (8), one finds the required number of 
stochastic trials: Ntrials ≈ 106. For a relative error of 10%, only about 104 trials are needed. Thus, 
the required number of stochastic trials places a practical limit on the precision attainable for 
minor pathways. 

A.4. Processes 

A.4.1 Unimolecular Reactions 
The energy-dependent specific unimolecular rate constant k(E) is given by the RRKM 

statistical theory17,18,31,32,68: 

  
k(E) = m‡

m
σ ext

σ ext
‡

⎡

⎣
⎢

⎤

⎦
⎥

ge
‡

ge

1
h

G‡(E − E0 )
ρ(E)

 (4.1-1) 

where m‡ and m are the number of optical isomers,68 σext
‡ and σext are the external rotation 

symmetry numbers, and ge
‡ and ge are the electronic state degeneracies of the transition state and 

reactant, respectively; h is Planck's constant, G‡(E-E0) is the sum of states of the transition state, 
E0 is the reaction threshold energy, and ρ(E) is the density of states of the reactant molecule. The 
internal energy E is measured relative to the zero point energy of the reactant molecule and the 
reaction threshold energy (critical energy) is the difference between the zero point energies of 
reactant and transition state. Equation (4.1-1) was written by assuming that the rotational 
external symmetry numbers were not used in calculating the sums and densities of states.68 It is, 
however, assumed that internal rotor symmetry numbers are used explicitly in the sum and 
density calculations and hence do not appear in Equation (4.1-1). Note that the quantity set off in 
square brackets is the reaction path degeneracy.68  

At low energies, where densities of states may be very sparse, ρ(E) may be very small or 
zero in a given energy grain (lower energy portion of the double array). In MultiWell, this is 
treated as if there are no reactant states in the energy grain: k(E) is set equal to zero in that grain. 
During evolution of the population distribution, population never resides in energy grains that do 
not contain reactant states. 

Tight Transition States 
For a tight transition state, G‡(E-E0) can be calculated from a vibrational-rotational 

assignment and the reaction threshold energy can be corrected approximately for angular 
momentum effects by using a pseudo-diatomic model.16,18,68 All polyatomics are treated by 
DenSum and MultiWell as SYMMETRIC TOPS with moments of inertia IA, IB = IC and 
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corresponding rotational constants A = ħ2/2IA and B ==ħ2/2IB. The rotational energy of a 
symmetric top is given by 

Er J,K( ) = J J +1( )B + (A − B)K 2  

where quantum numbers J and K refer to the two-dimensional 2-D adiabatic rotor (i.e. the one 
that conserves angular momentum J) and to one-dimensional rotation about the top axis 
(projection of J on the top axis), respectively (see Section 9.4). For a given value of J, quantum 
number K can take values from -J to +J, inclusive; all such states are doubly degenerate except 
for K=0, which is singly degenerate. In the present version of DenSum, the K-rotor is normally 
designated as a simple 1-D rotation (either quantized or classical). The moment of inertia for the 
K-rotor IK is given by  

IK = IA
−1 − IB

−1⎡⎣ ⎤⎦
−1

 

In many applications, IK ≈ IA.  
Because the K-rotor is normally designated as a simple rotation in MultiWell simulations, 

the range of K is normally not restricted to ±J. When IA < IB (prolate top), then IK > 0. When IA > 
IB (oblate top), then IK < 0. If the K quantum number is not constrained to K ≤ |J|, then Er(J,K) 
can be <0. The unrestricted range of K is not serious a approximation for prolate tops, since the 
rotational energy is >0 for all values of J and K. For oblate tops, however, Er(J,K) can be <0 
when K >> J. Thus the approximate treatment of the K-rotor may fail seriously for oblate tops. 
The kro degree of freedom type (see DenSum) employs the correct treatment for a user-specified 
value of J. 

Thus the three external rotations of a non-linear molecule consist of a 1-dimensional rotor 
(the 1-D "K-rotor") and a 2-dimensional top (the 2-D adiabatic rotor). The K-ROTOR 
properties are listed in densum.dat and included in density and sums of states calculations. 
Pragmatically, IB is usually not equal to IC, since most chemical species are not true symmetric 
tops. For almost symmetric tops (where IB ≈ IC), one can use either of two reasonable 
approximations for I2D (see Section 9.4): 

I2D ≈ IBIC[ ]1/2  [Ref. 16,18] or  I2D ≈ IB
−1 + IC

−1⎡⎣ ⎤⎦
−1

  [Ref. 65] 

The 2-D ADIABATIC ROTOR moment of inertia is listed in multiwell.dat on Line 8 
(for wells) or Line 14 (for transition states). The moment of inertia IK of the K-rotor is given by  

IK = IA
−1 − I2D

−1⎡⎣ ⎤⎦
−1

 

This is sometimes approximated as IK ≈ IA. The K-rotor is normally listed as a 1-D rotation in the 
DenSum data file. 

When k(E) is calculated according to RRKM Theory, centrifugal corrections 
(recommended Keyword 'CENT2') are applied by averaging k(E,J) over a thermal distribution 
of J. Here, k(E,J) is given by Eq. 4.1-1, but with the density of states in the denominator written 
as in Section 4.10.1 in Robinson and Holbrook31 (or Section 3.10 of Holbrook et al.32). 
Essentially, k(E,J) can be written  

k(E, J ) = m‡

m
σ ext

σ ext
‡

⎡

⎣
⎢

⎤

⎦
⎥
ge
‡

ge

1
h

G‡(E+ )
ρ(E+ + E0 +∆ Er J( ))  (4.1-2a) 
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where E+ is the active energy that is assumed to randomize rapidly and ∆Erot(J) is the difference 
in the adiabatic rotational energy between transition state and reactant molecule: 

∆ Erot J( ) = B‡ − Be{ }J J +1( )  (4.1-2b) 

Here, B‡ and Be are the rotational constants (for the adiabatic 2-D rotations) of the transition state 
and the equilibrium reactant molecule, respectively. Since Be is usually significantly larger than 
B‡, ∆Erot(J) is usually negative. The rotational averaging is carried out as usual: 

k E( ) = 1
Q2D

k E, J( ) ⋅ 2J +1( ) ⋅exp −Be ⋅ J ⋅ J +1( )
kBT

⎡

⎣
⎢

⎤

⎦
⎥

J=0

∞

∑  (4.1-2c) 

This model amounts to assigning a fixed transition state, since B‡ does not change with 
rotational state (or inter-fragment distance), and thus is a relatively poor approximation for loose 
transition states. The limitations of this approach are overcome to a large extent if a semi-
empirical approach like the Hindered Gorin Model (see below) is applied, where B‡ is assumed 
to vary with temperature. 

Loose Transition States 
For loose transition states, more elaborate techniques are needed for calculating k(E) 

accurately. Such techniques include Variational Transition State Theory,68,99 Adiabatic Channel 
Model,116 and Flexible Transition State Theory.87 Computer codes have been published for some 
of these theories.89,117 These methods can be used in the current version of MultiWell by 
calculating k(E) externally and supplying the k(E) values an appropriately formatted external 
data file. MultiWell will accept double arrays (from external files) that specify GTS(E-E0) (which 
can be calculated conveniently using codes like DenSum, part of the MultiWell suite), or that 
specify k(E-E0). Since a double array is used, the effective energy grain can be very small near 
the reaction threshold, where high energy resolution is important.  

The choice of approach depends on several factors, including personal preferences, 
computational costs, required accuracy, and whether experimental data are available. MultiWell 
can in principle be used for any method that one wishes to use, but the most sophisticated 
methods require considerable work outside the MultiWell package; the simpler methods can be 
implemented with built-in options. Even when computer resources are not a limitation, the 
limitations of current electronic structure theories are significant, possibly leading one to choose 
one of the simpler methods. 

In the following, we list several methods, starting with the simplest, and describe 
strengths and weaknesses. These methods require either some experimental data, or an empirical 
estimation method (e.g. thermochemical kinetics63), or perhaps both. They are based on fitting 
canonical (thermal) rate constants and then using the appropriate parameters in microcanonical 
master equation simulations. 

Inverse Laplace Transform Method 
With this method, experimental Arrhenius parameters must be known or estimated for the 

high-pressure limit of the thermal decomposition reaction. If the Arrhenius parameters are 
known for the recombination reaction, the equilibrium constant Keq can be used to determine the 
corresponding parameters for the unimolecular decomposition reaction. Since rate constants for 
recombination reactions are usually only weakly dependent on temperature, the activation energy 
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for the recombination may be assumed to equal zero. In most cases, it is a good approximation to 
assume that E∞, the Arrhenius activation energy at the high pressure limit, is equal to the critical 
energy for reaction (E0). MultiWell input for ILT calls for only two parameters: E0 and the 
corresponding Arrhenius A-factor.  

A selectable option in MultiWell is to calculate k(E) using the Inverse Laplace Transform 
method described by Forst:16,18,118 

  
k(E)= m‡

m
σ ext

σ ext
‡

⎡

⎣
⎢

⎤

⎦
⎥

ge
‡

ge

A∞

ρ(E − E∞ )
ρ(E)

 (4.1-3) 

where A∞ and E∞ are the Arrhenius parameters for the corresponding high pressure limiting 
thermal rate constant. Note that the reaction path degeneracy (the quantity in square brackets) 
can be absorbed into A∞ if desired. For added accuracy near the reaction threshold, E∞ may be 
replaced in Equation (4.1-3) by E0, the threshold energy. This substitution may improve the 
threshold behavior, but it introduces a small error in the calculated high pressure limit activation 
energy. 

 
Required info: 

• Experimental (or estimated) Arrhenius parameters 
• Reaction enthalpy and Keq are needed to obtain the rate constant for the reverse 

reaction. 
 
Strengths: 

• Quickest and easiest method (a built-in option in MultiWell) 
• Does not require TST parameters for the transition state. 

 
Drawbacks: 

• Over wide temperature ranges, the thermal rate constants may not obey the strict 
Arrhenius form. Errors from this source, however, are usually relatively small. 

• This method for computing k(E) is not as accurate as transition state theory (i.e. 
RRKM theory). 

• The ILT does not allow the use of centrifugal correction factors, which are needed to 
account for conservation of angular momentum. Neglect of angular momentum can 
affect the magnitude and temperature-dependence of the energy transfer parameters 
needed to describe pressure fall-off. 

Hindered Gorin Model 
When the rate constant is known from experiments, it is often convenient to use a 

"restricted" or "hindered" Gorin Model with a "hindrance parameter" selected to reproduce a 
known rate constant for a recombination reaction.44,63,68 The same transition state is appropriate 
for the corresponding unimolecular decomposition reaction. The basic idea is that the TST 
internal degrees of freedom consist of vibrations (the unperturbed vibrational frequencies of the 
reactants) plus internal rotations (the relative rotations of the two reactants with rotational 
constants modified by an empirical multiplicative constant) plus external rotations (two adiabatic 
rotations and the K-rotor). The empirical factor is adjusted in order to fit the experimental 
canonical recombination rate constant.  



 

- 133 - 

According to the Gorin model,84 the two molecular fragments rotate independently of one 
another while separated at the distance corresponding to the centrifugal maximum (rmax) of the 
effective potential of the bond being broken. In the present work, the rotations of both fragments 
and the over-all transition state are treated approximately as symmetric tops (see Section 9.4). 
The over-all transition state has a 2-D external adiabatic rotation with moment of inertia given by 
I2D

‡ = µr2
max, where µ is the reduced mass of the two fragments, and a 1-D external rotation (the 

"K-rotor") with moment of inertia Ik. The K-rotor is not adiabatic and is assumed, according to 
the usual approximation,68 to mix energy freely with the active vibrations. The internal rotations 
of fragments A and B are characterized by 2-D rotations with moments of inertia Ia and Ib, 
respectively, and an internal rotation with reduced moment of inertia Ir. The moments of inertia 
Ir and Ik are obtained by combining the K-rotors of the individual fragments, as described by 
Gilbert and Smith.68  

In the restricted, or Hindered Gorin Model,44,63,68 it is assumed that the two fragments 
interfere sterically with each another and thus cannot rotate freely. The effect is to reduce the 
available phase space and hence reduce the sum of states. Operationally, a "hindrance" parameter 
η is defined,44 which can vary from zero (free rotation) to unity (completely hindered. The 2-D 
moments of inertia Ia and Ib are multiplied by the factor (1-η)1/2 to obtain the effective 2-D 
moments of inertia used for calculating the sum of states. Examples of the Hindered Gorin 
Model used with MultiWell can be found elsewhere.40,119 

THERMO (in the MultiWell Program Suite) has built-in capability for using the Hindered 
Gorin Model for fitting thermal recombination rate constants.  

 
Required info: 

• Experimental (or estimated) recombination rate constant 
• Reaction enthalpy and Keq are needed to obtain the rate constant for the reverse 

reaction. 
• Vibrational frequencies and rotational constants of the recombination reactants. 
• An assumed function for V(r) along the reaction coordinate (usually a Morse or 

Varshni potential) described by the center-of-mass distance between the two 
reactants. 

 
Strengths: 

• Relatively easy method. 
• Generates TST parameters that fit the experimental canonical recombination rate 

constant at a given temperature. 
• TST (i.e. RRKM) is a proven method; centrifugal corrections are employed. 
 

Drawbacks: 
• Experimental or estimated rate constants are required at every temperature. 
• Fitting of the rate constants must be carried out at each temperature. 
• TST parameters are different at each temperature. 
• Separable harmonic oscillator and rigid rotor approximations may not be sufficiently 

accurate. Using separable hindered internal rotations is significantly more accurate, 
but more expensive. 

Semi-empirical Canonical Variational Transition State Theory 
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We are currently using Semi-empirical Canonical Variational Transition State Theory 
(VTST) for applications where electronic structure methods are not reliable, but can still supply 
useful information. The basic idea is to use methods like Density Functional Theory (DFT; e.g. 
B3LYP) and large basis sets to carry out constrained optimizations at fixed distances along a 
reaction path in order to obtain the rotational constants and the vibrational frequencies 
orthogonal to the path, but then use empirical expressions for V(r), the potential energy along the 
path. For example, we have used V(r) = −Cr−n, where C is a constant and n = 6.  

The vibrational frequencies, rotational constants, and V(r) vary with position along the 
path. At each of the fixed points along the path, one can use those quantities as input to THERMO 
(in the MultiWell Program Suite) for computing a trial rate constant for the thermal reaction. The 
minimum trial rate constant corresponds to the VTST rate constant. The minimum rate constant 
is best obtained by interpolation between the fixed points, but for points separated by 0.1 Å or 
less it is almost as good to use the lowest trial rate constant, without interpolation. We find that 
by varying the constant C, it is possible to fit the experimental recombination rate constant at a 
given temperature (e.g. 298 K). According to our limited experience with this method, the value 
of the constant C fitted at a single temperature is in reasonable agreement with the temperature 
dependence of the recombination reaction, when known. 

For a master equation simulation at temperature T, one uses the transition state 
parameters (vibrational frequencies, rotational constants, and V(r)) corresponding to the 
variational transition state at T. 

 
Required info: 

• Experimental (or estimated) recombination rate constant 
• Reaction enthalpy and Keq are needed to obtain the rate constant for the reverse 

reaction. 
• Constrained geometry optimizations at fixed distances along the reaction path; and 

corresponding vibrational frequencies and rotational constants. 
• An assumed function for V(r) along the reaction coordinate (e.g. V(r) = −C/r−n with 

n=6). 
 

Strengths: 
• Uses theoretically calculated geometries and vibrational frequencies (which are more 

trustworthy than total energies). 
• Generates TST parameters that fit the experimental canonical recombination rate 

constant at a given temperature. 
• Temperature dependence of the rate constant can be estimated from fitting to the rate 

constant at a single temperature. 
• TST (i.e. RRKM) is a proven method; centrifugal corrections are employed. 
 

Drawbacks: 
• Experimental or estimated rate constants are required at every temperature. 
• Even for "economical" methods, the constrained optimizations and vibrational 

analysis can be expensive. 
• For best accuracy, fitting of the rate constants must be carried out at each 

temperature. (However, fitting at a single temperature provides at least a rough 
estimate of the temperature dependence and may be adequate.) 



 

- 135 - 

• TST parameters are different at each temperature. 
• Separable harmonic oscillator and rigid rotor approximations may not be sufficiently 

accurate. Using separable hindered internal rotations is significantly more accurate, 
but more expensive. 
 
 

High and Low Pressure Limits 
Regardless of the method for calculating k(E), the unimolecular rate constant at the high 

pressure limit k∞(Ttrans) is calculated in MultiWell by using ρ(E) and k(E). The strong-collider 
rate constant at the low pressure limit is proportional to bath gas concentration: k0

SC(Ttrans)[M]. 
The proportionality constant k0

SC(Ttrans) is calculated by using ρ(E) and kc, the bimolecular rate 
constant for collisions (see Section A.4.3): 

  
k∞(Ttrans ) =

1
Q(Ttrans )

k(E)ρ(E)exp(−E / kBTtrans )dE
E0

∞

∫  (4.1-4a) 

k
0

SC (Ttrans ) =
kcoll

Q(Ttrans )
ρ(E)exp(−E / kBTtrans )dE

E0

∞

∫  (4.1-4b) 

In these expressions, Q(Ttrans) is the partition function of the reactant internal degrees of freedom 
(the degrees of freedom used to calculate ρ(E) and k(E)) at translational temperature Ttrans: 

  
Q(Ttrans ) = ρ(E)exp(−E / kBTtrans )dE

0

∞

∫  (4.1-5) 

The numerical integrations are carried out using the trapezoidal rule, because ρ(E) 
fluctuates wildly at low energies. Test show that the numerical  integration produces values for 
k∞(Ttrans) that are accurate within a fraction of 1% for usual values of ∆Egrain .23 The activation 
energy is obtained by calculating k∞(Ttrans) at two closely-spaced temperatures: 

  
E∞ = −R

ln k∞(T2 ) / k∞(T1)⎡⎣ ⎤⎦
T2

−1 −T1
−1⎡⎣ ⎤⎦

 (4.1-6) 

From the activation energy and the rate constant at one temperature, the A-factor (A∞) can be 
calculated. Values for k∞(Ttrans), E∞, and A∞ calculated in this way are reported (for each 
reaction) in the general output file. Note that the numerical values for the high pressure rate 
constant k∞(Ttrans) (also, E∞ and A∞) should be the same, regardless of whether centrifugal 
corrections are used or not (Keywords 'CENT2' or 'NOCENT'), but k0

SC(Ttrans) depends on the 
particular choice. The value for k∞(Ttrans) is formally identical to that given by canonical 
transition state theory. 
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Effects of  Slow IVR 
RRKM theory is based on the premise that energy is completely randomized on a time 

scale that is fast compared to chemical reaction. For most experiments, this condition appears to 
be met, but some examples of "intrinsic non-RRKM" behavior are known.  For these reactions, 
the sow transfer of internal energy to the reaction coordinate from the other degrees of freedom 
limits the rate constant, which falls below the RRKM statistical limit. Several theories for the 
effects of slow IVR have been proposed,32,120-124 but perhaps the most successful of these is the 
local random matrix model of Wolynes and coworkers.8,9,125-127 

According to most of the IVR models,8,124 the effects of slow IVR can be accounted for 
with an IVR transmission coefficient: 

κ IVR U, M[ ]( ) = k
IVR

q U( ) + k
IVR

c M[ ]
k

IVR

q U( ) + k
IVR

c M[ ]+ν ivr

 (4.1-7) 

where U is the total vibrational energy and kq
IVR(U) is the collision-free IVR rate constant, which 

must be calculated by one of the theories mentioned above. In particular, the Wolynes-Leitner8 
has been used with MultiWell.128,129 For convenience in MultiWell, the total vibrational energy is 
measured from the reaction critical energy (U = E - E0r), and kq

IVR(U) is expressed as a 
polynomial:  

k
IVR

q U( ) = CIVR,1 +CIVR,2U +CIVR,3U
2  (4.1-8) 

Parameter νivr is a characteristic frequency for IVR (identified by Leitner and Wolynes8 
as the imaginary frequency for an isomerization reaction) and parameter kc

IVR is the bimolecular 
collision rate constant (expressed in units of cm3 s-1) for collision-induced IVR. A threshold for 
IVR must also be specified: tIVR, which in MultiWell is measured from the reaction critical 
energy. It can be used in cases where there is a sudden on-set of kIVR(U) at the threshold, 
followed by a quadratic increase with energy. The specific unimolecular rate constant as 
modified by IVR is finally given by the product of the transmission coefficient κivr(E,[M]) and 
the specific rate constant kRRKM(E) calculated using RRKM theory, where E is the total 
vibrational energy measured from the zero point energy of the reactant, as usual: 

k E, M[ ]( ) =κ IVR E, M[ ]( ) ⋅ kRRKM E( )  (4.1-9) 

The resulting specific (energy dependent) unimolecular rate constant depends on pressure, as 
indicated. 

Using the Leitner-Wolynes model for IVR, simulations of data for trans-stilbene 
isomerization are in very good agreement with a large body of experimental data.8,129 They 
indicate that collision-induced IVR occurs with a rate constant (kc

IVR) similar in magnitude to the 
total collision rate constant kq calculated using the method developed by Durant and Kaufman25 
(see the next section). 

Tunneling: Unsymmetrical Eckart Barrier 
[NOTE: for a far more sophisticated treatment of tunneling, see Semi-Classical Transition 
State Theory (SCTST) in Chapter 7 and Section 9.9.] 

(This section on Eckart Tunneling contributed by Philip J. Stimac.) 



 

- 137 - 

Quantum mechanical tunneling corrections to the microcanonical rate constants k(E) 
have been implemented in MultiWell using a one dimensional unsymmetrical Eckart barrier.130 
The modification of k(E) within MultiWell is accomplished by evaluating the sum of states of 
the transition state according to Eq. 9 of the paper by Miller131:  

  
N (E) = P(E1)N ' (E − E1)dE1

−Vo

E−Vo

∫  (4.1-10) 

where  Vo  is the classical barrier height (in the direction of the forward reaction);   E1  is the energy 
in the reaction coordinate, relative to the top of the energy barrier;  E is the total energy; 

  N
' (E − E1) is the density of states at energy   (E − E1) ;   P(E1)  is the tunneling probability: 

  
P(E1) = sinh(a)sinh(b)

sinh2((a + b) / 2)cosh2(c)
 (4.1-11a) 

  
a = 4π

hν i

E1 +Vo

(Vo
−0.5 +V1

−0.5)
 (4.1-11b) 

  
b = 4π

hν i

E1 +V1

(Vo
−0.5 +V1

−0.5)
 (4.1-11c) 

  
c = 2π

VoV1

(hν i )
2 −

1
16

. (4.1-11d) 

In these equations,   ν i  and V1  are the imaginary frequency (related to the curvature of the saddle 
point on the potential energy surface at the transition state) and the classical barrier height 
relative to the products, respectively. The tunneling corrections to the sum of states of the 
transition state were applied using Eqs. (4.1-10) and (4.1-11) after transforming the integral in 
Eq. (4.1-10) to the expression 

  
N (E) = P(E −Vo − E† )N ' (E† )dE†

0

E

∫ . (4.1-12) 

  E†  is the energy in the vibrational modes orthogonal to the reaction coordinate and the quantity 

  (E −Vo − E† )  is the energy in the reaction coordinate. The primary difference between Equation 
(4.1-12) and Equation (4.1-10) is that the zero of energy is chosen to be at the minimum of the 
reactant in Equation (4.1-12), whereas the zero of energy is chosen to be at the transition state in 
Equation (4.1-10). Numerical tests showed that Equation (4.1-12) reproduces Fig. 2 of Miller.131 

Equation (4.1-12) is evaluated in the subroutine Eckart within MultiWell. The integral is 
only evaluated at the grain energies. Evaluation of Equation (4.1-12) begins with all the energy 
in the reaction coordinate. This means that the tunneling probability is at a maximum while the 
density of states of the transition state is at a minimum. The integration continues until the 
tunneling probability  P(E −Vo − E† ) become less than some cutoff value ‘tunthresh’, which is 
specified in the include file declare1.inc. The default value in declare1.inc is tunthresh=1.0E-12. 
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The k(E) calculated using the modified sums of states of the transition state reflect the 
tunneling effects. These tunneling corrected k(E) are also used to calculate the high-pressure rate 
constant  k∞ , and are used to initialize the chemical activation distribution if both the CHEMACT 
and TUN keywords are selected. Please note that the TUN keyword cannot be used with the ILT 
or RKE keywords. 

 

A.4.2 Competitive Pseudo-First-Order Reaction 
In many practical systems, unimolecular and recombination reactions may be in 

competition with bimolecular reactions involving the same vibrationally excited species.132 For 
example, a vibrationally excited species (A*) produced by an exothermic reaction may both 
undergo isomerization and react in a bimolecular reaction with another species (B), prior to 
collisional deactivation. If B is present in great excess, the pseudo-first-order approximation is 
applicable and one can define a pseudo-first order rate coefficient: kI = kbim[B], where kbim is the 
bimolecular rate coefficient and [B] is the concentration of the reaction partner B, which is 
present in great excess.  

Prior to incorporation of this feature, Moriarity and Frenklach133 used MultiWell for 
assessing several complicated reaction paths that may lead to aromatic ring formation in 
combustion systems. They found that certain vibrationally excited intermediates persist for 
relatively long periods and therefore bimolecular reactions between energized adducts and 
gaseous partners may need to be included in future calculations.  

The procedure for implementation of a pseudo-first-order competitive reaction in 
MultiWell depends on whether it is assumed that kbim is independent of the energy distribution of 
A*. In that case, kI can be calculated using the canonical bimolecular rate constant: kI = kbim[B]. 
This value for kI is then used to construct an external rate constant data file (with file name suffix 
".rke"), which MultiWell will treat just like an ordinary unimolecular reaction. Centrifugal 
corrections should not be employed for this reaction and the reaction should be treated as non-
reversible. 

If it is assumed that the bimolecular rate constant depends on the vibrational energy 
distribution of species A*, then an energy dependent expression for kbim(E) must be used. In 
principle, this energy-dependent rate constant can be calculated from classical trajectories, 
quantum scattering, or other dynamical theories. However, since MultiWell is for the most part 
based on statistical theory, it is also appropriate to use microcanonical transition state 
theory.134,135  

Theory 

The discussion in this section was adapted from our recent paper on reactions of acetyl radical 
with O2.136 

Bimolecular reactions can be treated by using the bimolecular pseudo-first-order 
microcanonical approach. The microcanonical bimolecular rate constant is given by  

kbim (E+ ) = mAB
≠  σ Aσ B

mAmB  σ AB
≠

⎡

⎣
⎢

⎤

⎦
⎥  

ge(AB)
≠

ge(A)ge(B)

   1
h
GAB

≠ (E+ − E0 )
ρAB(E+ )

 (4.2-1) 
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ρAB E+( ) = ρA E+ − x( )ρB x( )  dx
0

E+

∫  (4.2-2) 

where E+ is the total rovibrational energy, ρAB(E+) is density of states of the A+B supermolecule, 
i.e. ρAB(E+) is the convolved density of states of the two reactants A and B, including all degrees 
of freedom except for the three coordinates of the supermolecule center of mass. The factor 
G‡

AB(E+-E0) is the sum of states of the transition state. The other symbols (m, ge, and σ) have the 
same meaning as in Eq. 4.1-1. Here, however, the 2D-rotors are assumed to be active and hence 
are included with the K-rotor in calculating ρAB(E+) and G‡

AB(E+-E0). The canonical bimolecular 
rate constant can be calculated by averaging over the canonical energy distribution of the A+B 
supermolecule:  

kbim T( ) =
kbim (E+ )  ρAB(E+ )  e−

E+

RT dE+

E0

∞

∫
Qtot (T )

 (4.2-3) 

where Qtot(T) is the total partition function of the supermolecule at temperature T: 

Qtot T( ) = ρAB(E+ )  e−
E+

RT dE+

0

∞

∫  (4.2-4) 

We assume that reaction occurs when two conditions are met: E+ is greater than the 
reaction threshold energy and the translational energy is greater than zero. For present purposes, 
we assume that the degrees of freedom of the supermolecule are partitioned into two groups. The 
degrees of freedom (DOF) in Group 1 are associated with the vibrations and K-rotor of excited 
species A* (i.e. the active DOF of species A) and all of the remaining DOF are collected in 
Group 2. We also assume that the energy distribution of the Group 2 models is thermal, while the 
energy  of the Group 1 DOF is held fixed (adiabatic). Thus the total energy can be expressed as 
E+ = E1 + E2. Note that other groupings can be postulated, depending on the system to be 
simulated, and centrifugal corrections may be included in future work. 

From the partitioning of the DOF, a semi-microcanonical bimolecular rate constant that 
depends on E1 and T is obtained by averaging over the canonical E2 energy distribution: 

kbim (E1,T )
2
=

kbim (E1 + E2 )  ρ2 (E2 )
Elow

∞

∫  exp −E2

kT
⎛
⎝⎜

⎞
⎠⎟ dE2

Q2 (T )
 (4.2-5) 

where Elow is the lower limit to the integral (the larger of 0 or (E0 - E1)), ρ2(E2) is the density of 
states for the Group 2 DOF of the supermolecule and Q2(T) is the corresponding partition 
function: 

Q2 (T ) = ρ2 (E2 ) exp −E2

kT
⎛
⎝⎜

⎞
⎠⎟

0

∞

∫  dE2  (4.2-6) 

The canonical bimolecular rate constant can be obtained from <kbim(Ev,T)>2 by averaging over 
E1: 
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kbim T( ) =
kbim (E1,T )

2
 ρ1(E1)  exp −E1

kT
⎛
⎝⎜

⎞
⎠⎟ dE10

∞

∫
Q1(T )

 (4.2-7) 

where ρ1(E1) and Q1(T) are the density of states and the corresponding partition function, 
respectively, of the Group 1 DOF:  

Q1(T ) = ρ1(E1) exp −E1

kT
⎛
⎝⎜

⎞
⎠⎟ dE10

∞

∫  (4.2-8) 

Numerical integrations of Eq. 4.2-3 and of 4.2-7, carried out by the trapezoidal rule, give 
results at 300 K for the A2 + O2 reaction that agree to within ~1% when the energy grain is ≤5 
cm-1.136 

The semi-microcanonical pseudo-first order rate constant (units of s-1), which depends 
only on the active energy of reactant A*, is obtained by multiplying <kbim(E1,T)>2 by [B], the 
concentration of the reactant that is present in great excess: 

k I (E,T ) = kbim (E1,T ) 2  [B]  (4.2-9) 

The rate constants <kbim(E1,T)>2, kbim(E1+E2), and <kbim(T)> are compared in Figure 4.2.136 

 
FIGURE 4.2:  A comparison of k(E), <kbim(E1,T)>2, and <kbim(T)> at T=298 K 
for the reaction A2' + O2 → B1 [see reference 136 for details]. 

In order to treat competition between unimolecular and bimolecular pathways, kI(E,T) is 
calculated and stored in an external data file, which is used as input to the MultiWell master 
equation computer program. Group 1 consists of the active DOF in species A. Thus kI(E,T) can 
be used directly in the master equation simulations as if it were an ordinary microcanonical rate 
constant for a unimolecular reaction. Care must be taken, however, to treat it as an irreversible 
reaction in MultiWell, since the detailed balance relations22 have been coded only for 
unimolecular reactions. To include the reverse reaction would require using a theory for 
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partitioning energy between unimolecular reaction products99,137 in order to obtain the energy 
distribution in A (i.e. dissociation of the reaction product to regenerate A + B). Since such a 
treatment has not been implemented in MultiWell, one should treat the bimolecular reaction as 
irreversible. Treating such bimolecular reactions as irreversible may be a good approximation at 
ambient temperature, but a poor approximation at combustion temperatures. 

In master equation simulations, unimolecular reaction, bimolecular reaction, and 
collisional deactivation of A* take place concurrently. Furthermore, the concentration of species 
B determines both the rate of collisional deactivation and the rate of the pseudo-first-order 
bimolecular reaction. Consequently, the importance of the microcanonical method is expected to 
be significant only at low pressures. After A* is thermalized by collisions, the microcanonical 
treatment coincides with the canonical approach. 

DenSum Calculation 
Using DenSum, it is easy to calculate the sum and density of states for the bimolecular 

reaction. For the transition state, all vibrations, torsions, and external rotations should be 
included in calculating the sum of states. The same is true in calculating the combined density of 
states of A+B. In addition, the 3-dimensional relative translation between A and B must also be 
included. Once again, centrifugal corrections should not be employed for this reaction and the 
reaction should be treated as non-reversible in MultiWell. 

DenSum first uses the analytic convolution of classical translational states with the 
classical rotor states. The analytic expression for convolved classical trans-rot states is obtained 
as follows. First, note that the classical partition function is the Laplace transform of the classical 
density of states:16,18 Q(β) = L[ρ(E)], where β is the Laplace transform parameter and can be 
identified as β = (kBT)-1. The corresponding sum of states is G(E) = L-1[Q(β)/β], where the right 
hand side is the inverse Laplace transform. Now consider a microcanonical system with total 
energy E partitioned into two parts, the total sum of states is given by the convolution integral:18 

G12 E( ) = G1 x( )ρ2 E − x( )dx
0

E

∫  (4.2-10) 

where G1(x) is the sum of states for the first group of degrees of freedom, which contain energy 
x,  and ρ2(E-x) is the density of states for the second group, which contain the remaining energy. 
This convolution can also be expressed as an inverse Laplace transform:18 

 
 
G12 E( ) = L−1 Q1 β( )Q2 β( )

β
⎧
⎨
⎩

⎫
⎬
⎭

 (4.2-11) 

where Qi(β) is the partition function of the ith group of modes. For p independent classical 
rotations, the partition function can be written18,32 

Qrot T( ) = 8π 2IikBT
h2

⎛
⎝⎜

⎞
⎠⎟

di /2

Γ di
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

p

∏ = ar kBT( )r/2  (4.2-12a) 

r = di
i=1

p

∑  (4.2-12b) 

where di is the dimensionality of the ith  rotation, Ii is its moment of inertia, and the other symbols 
take their usual definitions.  
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For 3-D relative translation, the partition function can be written18 

Qtrans T( ) = 2π µ
h2

⎧
⎨
⎩

⎫
⎬
⎭

3/2

V kBT( )3/2 = at kBT( )3/2  (4.2-13) 

where µ is the reduced mass and V is the volume. Therefore the total sum of states for combined 
translation and rotation is obtained using Equation (4.2-11): 

 

Grt E( ) = aratL−1 p−1−(r+3)/2( ) = 2aratE
r+3( )/2

r + 3( )Γ r + 3( )
2

⎛
⎝⎜

⎞
⎠⎟

 (4.2-14) 

When no rotations are present, the sum of states is just the sum of translational states:18,135 

Gt E( ) = 4π 2µE( )3/2
3h3

V  (4.2-15) 

These expressions are used by DenSum to calculate the number of states in each energy 
bin when initializing the sums of states array, according to the Astholz et al.30 modification of the 
Stein-Rabinovitch state-counting method.10 

 

A.4.3 Collisions 

Frequency of Inelastic Collisions 
It is conventionally assumed that the inelastic collision frequency is the same as that 

experienced by molecules subject to a Lennard-Jones intermolecular potential. For the Lennard-
Jones potential, kc takes the following form:138  

kc = πσ
2 v Ω 2,2( )*  (4.3-1) 

where <v> is the average speed at the translational temperature, σ is the Lennard-Jones diameter, 
and Ω(2,2)* is the collision integral,139 which depends on the Lennard-Jones parameters. Since 
only the product kcP(E,E') appears in the master equation, if kc is underestimated, then 
normalization of the step-size distribution is not appropriate. If, on the other hand, kc is 
overestimated, then P(E,E') must include elastic collisions.140 The inclusion of elastic collisions 
in the master equation causes no problems in principle, except to reduce the efficiency of certain 
numerical solutions. However, the fundamental question remains: is the frequency of inelastic 
collisions the same as the Lennard-Jones collision frequency?  

Lawrance and Knight141 used single vibrational level fluorescence and found that the 
observed total cross sections for inelastic collisions are in quantitative agreement with the 
Lennard-Jones collision frequency for a moderately high density of vibrational states. Classical 
trajectory calculations support this assumption,142,143 but the argument is somewhat circular in 
this case since the assumed potential energy functions are often constructed from pair-wise 
Lennard-Jones potentials. Recently, Xue et al.144 used quantum beat spectroscopy to investigate a 
single vibrational level of SO2 at high vibrational energy, and found cross sections substantially 
greater than predicted by the Lennard-Jones interaction potential. However, in the sparse density 
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of states regime at low vibrational energies it is well known that the inelastic collision cross 
section is small145 and thus the total inelastic collision rate constant is probably smaller than kLJ. 

A rigorous upper limit to kc is provided by the total collision rate constant kq, which is 
based on the total quantum cross section. Because of concern about the proper choice of kc and 
normalization of the step size distribution (see below), MultiWell provides an option for utilizing 
the total collision rate constant, which can be estimated from Lennard-Jones parameters by using 
the method of Durant and Kaufman.25 

In a new development,5 it is now assumed in MultiWell that the rate constant for inelastic 
collisions depends on the internal energy, reflecting the reduced rate constant expected at lower 
energies where the density of states is sparse. This new development is described in the 
following section. 

Normalization 
The rate coefficient R(x,y) is conventionally written as the product of the total 

vibrationally inelastic collision frequency kc(y)[M] multiplied by the "collision step-size 
distribution", P(x,y), which expresses the probability density that a molecule initially with initial 
energy y will undergo an inelastic transition to the energy range x to x+dx: 

R x, y( )dx= R x, y( )dx
0

∞

∫ R x, y( )dx R x, y( )dx
0

∞

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

, (4.3-2a) 

 = kc y( )P x, y( )dx  (4.3-2b) 

The first factor on the right hand side of Equation (4.3-2a), the integral over the rates of 
all inelastic transitions from initial energy y, is the frequency of inelastic collisions, kc(y)[M] and 
the second factor (in curly brackets) is P(x,y)dx. Note that P(x,y) is normalized: 

P(x, y)dx = 1
0

∞

∫  (4.3-3) 

It is important to emphasize that the factorization of R(x,y) in Equation (4.3-2) is merely 
for convenience and that kc(y)[M] and P(x,y) never occur independently of one another. 
Furthermore, P(x,y) only has an unambiguous physical interpretation when kc(y)[M] is exactly 
equal to the total inelastic collision rate constant. Since the exact inelastic collision frequency is 
not known, the inevitable errors in kc(y) are compensated in part by errors in P(x,y), when 
experimental data are fitted to this prescription. Thus it is important to use kc(y) and P(x,y) in a 
matched pair whenever possible.16,32,68 

By considering detailed balance at equilibrium in the absence of reactions, the 
relationship between R(x,y) and R(y,x) can be found. Detailed balance requires that in every 
increment of energy, the rates of forward and reverse processes must balance. The Detailed 
Balance relationship between the probability densities for up- and down-collisions is given by 

P x, y( )
P y, x( ) =

kc x( )
kc y( )

ρ x( )
ρ y( ) exp − x − y( ) / kBT⎡⎣ ⎤⎦  (4.3-4) 

The total probability density for an energy changing collision is normalized (see Eq. 4.3-
3) and can be written as the sum of two integrals corresponding to down- and up-collisions: 
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1= P x, y( )dx
0

y

∫ + P x, y( )dx
y

∞

∫  (4.3-5) 

In order to construct a normalized collision step size distribution (the probability density), it is 
common practice to specify a (dimensionless) non-normalized function f(x,y), which is assumed 
to be proportional to P(x,y): 

P x, y( ) = f x, y( )
N y( )  (4.3-6) 

where N(y) is a normalization constant. With this definition, the normalization equation becomes 

1= f x, y( )
N y( ) dx0

y

∫ +
f x, y( )
N y( ) dxy

∞

∫  (4.3-7) 

After rearranging this expression, we obtain a formal expression for the normalization constant 
N(y), expressed as a sum of integrals: 

N y( ) = f x, y( )dx
0

y

∫ + f x, y( )dx
y

∞

∫  (4.3-8a) 

= Nd y( ) + Nu y( )  (4.3-8b) 

where subscripts d and u denote down-steps (x<y) and up-steps (x>y), respectively.  
For convenience, the un-normalized function f(x,y) is usually specified for down-steps, 

but one could choose to specify a function for up-steps instead. We will follow convention and 
specify the function for down-steps, f(x,y) = fd(x,y) with x<y. Thus Nd(y) is easily evaluated: 

Nd y( ) = fd x, y( )dx
0

y

∫  (4.3-9) 

and Nu(y) can be expressed in terms of fd(x,y) by the detailed balance relationship: 

Nu y( ) = fd y, x( ) N y( )
N x( )

kc x( )
kc y( )

ρ x( )
ρ y( ) exp − x − y( ) / kBT⎡⎣ ⎤⎦dx

y

∞

∫  (4.3-10) 

If we had assumed that f(x,y) was specified for up-steps, an analogous procedure would be 
followed. 

Since N(x) appears in the integral expression for Nu(y), the solution of Eq. 4.3-10 is not 
completely straightforward. Normalization constant N(y) can be found by using trial values for 
N(x) and employing an iterative solution1 of Eq. 4.3-10, or by rearranging the equation as 
follows: 

N y( ) =
fd x, y( )dx

0

y

∫

1− fd y, x( )
N x( )

kc x( )
kc y( )

ρ x( )
ρ y( ) exp − x − y( ) / kBT⎡⎣ ⎤⎦dx

y

∞

∫
 (4.3-11) 
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Eq. 4.3-11 can be solved with the finite difference algorithm described by Gilbert and 
coworkers 68,146. Both of these approaches to finding N(y) are based on specifying fd(x,y) and 
requiring that N(y) first be estimated at very high energies, well above the energies of interest, 
where Nd(y) and Nu(y) tend to become independent of energy (at least when the average energy 
transferred per collision is independent of energy). 

As discussed in the previous section, kc(y) is expected to depend on the initial energy, y, 
but it is common practice to assume that the inelastic collision rate constants are independent of 
internal energy 1,18,32,146. This constant is conventionally identified with kLJ, the bimolecular rate 
constant for collisions between particles governed by a Lennard-Jones intermolecular 
potential.18,32,68 An accurate empirical expression for the collision integral has been reported by 
Neufeld et al.24, which has been cited by, for example, Gilbert and Smith.68 

Experience has shown that the assumption the kc is independent of energy leads to 
problems with normalization.5 Iterative normalization1 converges reasonably rapidly at high 
energies, but problems emerge at low energies, where the density of states is sparse and has large 
relative fluctuations. The problems are most severe when an energy grain that contains just a few 
states is bracketed on both sides by energy grains containing much higher densities of states. For 
these cases, the normalization factors for some of the energy grains tend to diverge, instead of 
converging during the iterative calculation. Because of this problem, it was necessary to limit the 
number of iterations to e.g. 2-5, so that normalization at high energy converges sufficiently, 
while normalization at low energy does not diverge too much. This strategy, although not 
completely satisfactory, is reasonably effective in producing steady-state energy distributions 
that simulate the equilibrium Boltzmann distribution.  

Related problems arise at low energies when using the finite difference algorithm of 
Gilbert and coworkers.68,146 The Gilbert algorithm is quite general, but in practice the pragmatic 
assumption is made that the collision frequency is independent of excitation energy. These 
problems result in normalization constants that are negative and therefore un-physical in some 
energy grains.  

Starting with MultiWell v.2009.0, we have incorporated a new treatment of collisions that 
solves the problems outlined above.5 

In principle it should be possible to express kc(y) as a function of N(y), but the specific 
functional dependence is not known. In the absence of specific knowledge about kc(y), we make 
the simplest possible assumption: that kc(y) is directly proportional to N(y).5 With this 
assumption, the following ratio, which appears in Eq. 4.3-10, equals unity 

N y( )
N x( )

kc x( )
kc y( ) = 1  (4.3-12) 

The assumption that kc(y) is directly proportional to N(y) requires that the collision frequency for 
a molecule with excitation energy y be calculated using kc(y) = C•N(y) (see Eq. 4.3-12), where 
the proportionality constant C must be established by some other means. Since the Lennard-
Jones rate constant kLJ conventionally has been used for calculating the low pressure limit of 
unimolecular and recombination reactions, we have adopted the following form for the total 
energy-dependent rate constant for the inelastic collision frequency: 

N y( )
N x( )

kc x( )
kc y( ) = 1  (4.3-13) 

where Eref is a reference energy.  
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In reaction studies, the rate of energy transfer is most important at energies near the 
reaction critical energy. Thus we identify Eref with the critical energy of the lowest reaction 
threshold energy (when multiple reaction channels are involved) that is higher in energy than the 
energy boundary (parameter Emax1) between the lower and upper portions of the double array in 
MultiWell. If no reaction threshold energies are below Emax1, we arbitrarily specify Eref as 
equal to Emax1. At Emax1, N(y) is a relatively smooth function and the density of states is 
typically >10-100 states/cm-1. Except at low energies, the numerical results obtained using this 
new approach are nearly the same as those obtained using the old conventional approach.5 

For convenience in the Monte Carlo selection of step sizes, both the normalization factor 
N(E') and the probability of an activating collision P(E,E') =[Na(E')/N(E')] are stored in double 
arrays for each well. At low state densities, P(E,E') exhibits random fluctuations and some 
energy grains may contain no states, while the function is quite smooth at high energies. Since it 
is desirable to be able to use arbitrary functions for the collision step size distribution, it is  not 
feasible to employ analytic expressions for the integrals in the normalization equation, which 
would allow much shorter computer execution times. In fact, several approximate analytical 
expressions were tested, but none was sufficiently accurate in the sparse density of states regime. 
For this reason, normalization is carried out numerically using the open-ended trapezoidal rule, 
which is a particularly robust algorithm.94 For low energies, the energy step size is set equal to 
that used in the lower energy portion of the double arrays (∆Egrain). At higher energies, the 
energy step size is set equal to a fraction (typically 0.2) of the magnitude of a characteristic 
energy transfer step:  

  
δ Ed =

d(ln fd (E, ′E ))
dE

−1

, for E' > E, (4.3-14a)  

  
δ Ea =

d(ln fa ( ′E , E))
dE

−1

, for E' < E, (4.3-14b) 

where fa(E,E') and fd(E,E') were defined above. For the exponential model, δEd is equal to α(E), 
which varies with internal energy. In general, both the characteristic energy length and the 
integration step size vary with energy. 

Collision Step-Size Distribution 
Many step-size distribution models have been used in energy transfer studies and there is 

still considerable uncertainty about the appropriate collision model and functional form of 
P(E,E').26,138,147 Note that Pd(E,E') for de-activating collisions is expressed in terms of an un-
normalized function fd(E,E') and normalization factor N(E): 

  
Pd (E, ′E ) = 1

N ( ′E )
fd (E, ′E )  for E' > E, (4.3-15) 

To offer a wide selection, MultiWell includes a number of different optional functional 
forms for fd(E,E'), including biexponential, Gaussian, Weibull distribution, etc. The best 
information currently available suggests that a generalized exponential function is most 
appropriate for deactivation steps:148  
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fd (E, ′E ) =exp − ′E − E

α ( ′E )

γ⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 , for E' > E, (4.3-15) 

where α(E) is a linear function of vibrational energy, and γ is a parameter that ranges from ~0.5 
to ~1.5. The corresponding expression for activation collisions is obtained from detailed balance. 
When the parameter γ is less than unity, the wings of the step-size distribution have enhanced 
relative probabilities that qualitatively resemble the bi-exponential distribution. When γ=1, 
Equation (4.3-15) gives the venerable exponential model.  

Monte Carlo Selection of Step-Size 
Two random numbers are used for selecting the collision step size. The first random 

number selects activating, or deactivating collisions by comparison to the up-transition 
probability Pup(E): 

  
Pup (E) = Na (E) / N (E)  up-transition probability (4.3-16) 

  
0 ≤ r3 < Pup (E) , activating (4.3-16a) 

  
Pup (E) ≤ r3 <1, de-activating (4.3-16b) 

To select the step-size, the second random number is used with the cumulative 
distribution for P(E,E') to find the final energy E, given initial energy E':1  

  
r4 =

1
Na ( ′E )

fa (x, ′E )dx
′E

E

∫ , activating (4.3-17a) 

  
r4 =

1
Nd ( ′E )

fd (x, ′E )dx
′E

E

∫ , de-activating (4.3-17b) 

The integrals are evaluated by the trapezoidal rule, just as described in the preceding 
section, until the equalities in Equation (4.3-17) are satisfied. In the high energy regime, this is 
accomplished by integrating step-by-step until an integration step gives a value for the right hand 
side of Equation (4.3-17) that is larger than r4. Linear interpolation is then used to find the value 
of final energy E that satisfies the equality. In the low energy regime, the integration is carried 
out step-by-step to find the energy step which gives the best agreement between the LHS and 
right hand side of Equation (4.3-17). Note that the normalization integrals in the low energy 
regime are stored in the lower energy portion of the double arrays. In the high energy regime, the 
normalization integrals are found by interpolation of values stored the high energy portion of the 
double arrays.  

Occasionally, the normalization integrals are overestimated due to imperfect interpolation 
and thus the equalities in Equation (4.3-17) cannot be satisfied. In such a case, the integral is 
evaluated step-by-step until the additional partial sum is less than a selected relative error 
(typically 10-6). This procedure yields an explicitly calculated value for the normalization 
integral. The interpolated normalization integral is then replaced with this new value and the 
energy step selection process is repeated. This procedure is somewhat cumbersome and 
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computationally intensive, but it was found to produce more accurate thermal distribution 
functions. 

A.4.4 Other Processes 
Additional processes can be incorporated into MultiWell calculations by using the 

capability of reading rate constants from external data files.  
Several processes have been neglected in the present version of MultiWell. For example, 

spontaneous infrared emission149 by the vibrationally excited species, which is particularly 
important at low pressure,3 has not been included. Similarly, stimulated emission, which is 
important in laser-induced chemical reactions,150,151 has also been neglected. Future versions of 
MultiWell may include these processes, especially if the kinetics community expresses an 
interest in them. 

 

A.5. Initial Conditions 
At the start of each stochastic trial, initial conditions must be specified. MultiWell selects 

the initial energy via Monte Carlo selection techniques that are based on the cumulative 
distribution function corresponding to a selected physical process. It is assumed that the reactant 
is at infinite dilution in a heat bath and thus there are no temperature changes due to reaction 
exothermicity or energy transfer. For most laboratory experiments, this is an acceptable 
approximation. 

A.5.1 Monte Carlo Selection of Initial Energies 
Monte Carlo selection of the initial internal energy is carried out by equating random 

number r5 to the cumulative distribution function Y0(E) corresponding to a given initial energy 
density distribution y0(E'): 

  
r5 = Y0(E) = y0( ′E )

0

E

∫ d ′E  (5.1-1) 

where E' is the integration variable. In MultiWell, Y0(E) is found by rectangular rule in the lower 
portion of the double array and by trapezoidal integration in the upper portion; the values are 
stored as a function of initial energy in a linear array. Jsize (which user-selected) array elements 
are used to cover the relevant energy range. For a thermal distribution (see below), the relevant 
energy range is assumed to be ~20kBT. The Monte Carlo selection is carried out by interpolating 
in the stored array to find the value of E at which Y0(E) = r5. Interpolation in this fashion is much 
more computationally efficient than calculating the integral in Equation (5.1-1) for each 
stochastic trial. 

A.5.2 Optional Initial Energy Density Distributions 
The initial energy density distributions that are included as options in MultiWell are 

described here. In addition to these choices, there is also a provision for providing a user-defined 
double array of Y0(E) values and for a delta function (which does not require Monte Carlo 
selection). Examples of user-defined functions include prior distributions98,112,152 and energy 
distributions that are the result of bond fission.153  
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Thermal Activation 
In an ordinary thermal unimolecular reaction system that takes place at infinite dilution, 

the translational and vibrational temperatures are equal and do not change during reaction 
(Ttrans=Tvib). For shock wave simulations, it is assumed that Ttrans changed instantaneously when 
the shock occurred and therefore is elevated at t=0, but Tvib remains at the temperature that 
described the thermal system prior to the shock. Subsequent vibrational energy transfer collisions 
cause the internal energy to increase. The only difference between shock tube and isothermal 
simulations is that in the former, the two temperatures are unequal. In both cases, the initial 
internal energy distribution function is a Boltzmann distribution characterized by Tvib. The 
probability of the initial energy E falling in the range between E and E+dE is given by the 
probability density function 

  

y0
(therm) (E)dE = ρ(E)e

− E
kBTvib dE

ρ( ′E )e
− ′E

kBTvib d ′E
0

∞

∫
 (5.2-1) 

Single Photon Photo-Activation 
The energy distribution produced by absorption of a single photon is assumed to be 

described by the thermal population at the ambient vibrational temperature added to the energy 
of the photon (hν). Hence, the probability density function for photo-activation is given by 
Equation (5.2-1) and the selected thermal energy is then increased by hν. 

Chemical Activation and Recombination Reactions 
Chemical activation is the process by which a single vibrationally excited species C(E) is 

produced from the bimolecular reaction of two precursor species (A and B): 

A + B → C(E) (5.2-2) 
where E is the vibrational energy. The excited molecule C(E) can then react by passing back out 
of the entrance channel, or proceeding forward through the product channel, as shown in Fig. 
5.1. The energy distribution of C(E) before it has a chance to react or be collisionally stabilized 
is the known as the chemical activation distribution function. It is appropriate for any 
recombination reaction that takes place under thermal conditions.  
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Figure 5.1. Energy diagram for chemical activation. 

The chemical activation distribution function is obtained from the reverse reaction by 
using detailed balance.16,18,31,32,68 The reverse reaction is the unimolecular decomposition 
reaction with rate constant ka(E) that produces the product set A+B. The index a specifies the 
particular unimolecular reaction channel C(E) → A + B. The resulting probability density 
function is a thermal distribution weighted by ka(E). The probability density function and 
corresponding Monte Carlo selection expression are as follows: 

y0
(ca,i )(E)dE = ka (E)ρ(E)e

− E
kBTvib dE

ka ( ′E )ρ( ′E )e
− ′E
kBTvib d ′E

E0a

∞

∫
,    for E ≥ E0a (5.2-3) 

r5 = y0
(ca,i )(E)

E0a

′E

∫ dE  (5.2-4) 

where the lower limits of the above equations are equal to E0a, the unimolecular reaction 
threshold energy. The density of states ρ(E) is for the molecule C. The trapezoidal rule is used in 
the selection procedure, as described above for thermal activation. 

A recombination reaction produces a recombination product, which is a chemically 
activated species. The chemically activated recombination product C(E) can react via the reverse 
of Reaction (5.2-2), and possibly by other unimolecular pathways, in competition with 
collisional energy transfer. Several quantities may be of interest, including branching ratios, net 
rates of reaction to produce specific final products, etc. In all cases, the first step is to simulate 
the reactions of the chemically activated recombination product C(E) under the desired 
conditions of temperature and pressure. The results of the simulation can be used in various ways 
to find the quantities of interest.23 

The total rate constant for the recombination reaction at the high pressure limit is 
obtained from detailed balance by using the equilibrium constant K(Ttrans) at translational 
temperature Ttrans: 
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krec,∞ = kuni,∞ / K(Ttrans )  (5.2-5) 

where krec,∞ and kuni,∞ are the high pressure limiting recombination and unimolecular 
decomposition rate constants, respectively; the latter of these is calculated and reported in the 
MultiWell standard output. The equilibrium constant K(Ttrans) is calculated using the program 
Thermo (part of the MultiWell computer program suite), which employs standard statistical 
mechanics formulas154,155 for the partition functions of the reactants A and B. 

To calculate the over-all rate constant for producing the ith product, the relative 
population (fraction) fi of that species at the end of the simulation is multiplied by krec,∞: 

  
k = fi krec,∞ = fi kuni,∞ / K(Ttrans )  (4.2-6) 

This procedure is appropriate whether or not there is an intrinsic energy barrier for the 
recombination reaction. 

 

A.6. Input 

A6.1 Major Options 

Densities of States: ρ(E) 
Densities of states for the wells are provided in an external file (in the form of a double 

array). DenSum is provided as a tool to calculate sums and densities of states according to the 
Whitten-Rabinovitch approximation,28,29 or according to the Stein-Rabinovitch method10 of exact 
counts. Molecular assignments for use in the current version of DenSum can be expressed in any 
combination of separable harmonic oscillators, Morse oscillators, and free rotors. For non-
separable degrees of freedom, other approaches will be needed (see references 48,156,157, for 
example). The moments of inertia needed for calculating rotational constants are evaluated with 
the program MomInert. This code requires Cartesian coordinates for the molecular structure. 
Such structures can be calculated with good accuracy by using quantum chemistry programs. 

Specific Unimolecular Rate Constants: k(E) 
Specific rate constants are needed for each reaction. There are three ways to provide rate 

constants: a) they may be calculated internally via the Inverse Laplace Transform (ILT) method, 
b) the sums of states can be provided in an external file, and c) the k(E) values can be provided in 
an external file. Data provided in an external file is in the form of a double array with energy 
origin at the reaction threshold energy. The double array allows high energy resolution near the 
reaction threshold where it is most important. For most purposes, it is most efficient to use 
DenSum, which calculates sums of states (G‡(E-E0)) and generates an external file suitable for 
input into MultiWell. However, Densum is only suitable for fixed transition states with separable 
degrees of freedom and therefore other methods must be used to calculate G‡(E-E0) or k(E-E0) 
for non-separable and flexible transition states. If the reaction is a reversible isomerization 
reaction, MultiWell uses the same external data file to calculate k(E-E0) for both forward and 
reverse reactions. By using the same external file for both forward and reverse reactions, the 
reversible isomerization rates are internally self-consistent. 
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A6.2 Properties of Wells and Transition States 
Energies (e.g. ∆Hf° at 0 K) are required for all wells and transition states, in order to 

establish the relative energies of isomers and reaction thresholds. Moments of inertia are needed 
for the inactive degenerate two-dimensional external rotation. Energy transfer parameters are 
needed for each well and MultiWell does not require that they be the same for all wells. One 
would expect the energy transfer parameters for a cyclic species to differ from those of a linear 
isomer. However, to the best of my knowledge the energy transfer parameters are not known for 
more than one isomer in any system. Until additional information becomes available, it is 
pragmatic to assume that all isomers have the same energy transfer parameters. 

 

A.7. Output 
MultiWell generates several output files that summarize the input data and the calculation 

results. 

A.7.1 multiwell.out  
This general output file summarizes the input parameters, thermochemistry, high pressure 

limit rate constants for each reaction, time-dependent average fractional populations (with 
standard deviations from Equation (11)), and average vibrational energies. The time-dependent 
quantities are the instantaneous (snapshot) values averaged over Ntrials stochastic trials: they are 
not averaged over the time interval, as was done in previous master equation codes from this 
laboratory.1,2,4  

A.7.2 multiwell.rate 
This file stores the time-dependent output of average unimolecular "rate constants" or 

flux coefficients102,158,159 (which vary with time in non-steady-state systems) for every reaction 
pathway: 

  
k j (t) = 1

Ntrials

k j (Ei(t))
i=1

Ntrials

∑  (7.1-1) 

where j designates the reaction channel. Many trials are needed to accumulate good statistics. To 
improve statistics, the binned results correspond to the number of visits to the bin (which can be 
many times larger than Ntrials) and thus are averaged over the time-duration of the bin. Note that 
that this averaging method differs from the snapshot method described above, where the number 
of snapshots is equal to Ntrials. In a steady-state thermal system, <k> is independent of time and 
equal to the average unimolecular rate constant kuni(T), which obtains when the energy 
distribution is in a steady state. In non-steady-state systems, <k(t)> varies with time and relaxes 
to a constant value as the system itself undergoes relaxation. As relaxation takes place, some 
reactions achieve steady-state, which is apparent as <k(t)> approaches a constant value. Thus, 
this output file is useful for several purposes, including monitoring relaxation and the approach 
to steady state. 

A.7.3 multiwell.flux 
This file stores the average time-dependent "reactive flux" through reaction channel j: 
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< Fj (t) >= freact t( ) k j (t)  (7.2-1) 

where freact(t) is the time-dependent average fraction of the reactant species and <kj(t)> is the 
average flux coefficient described above by Eq. 7.1-1. When two reactions come into pseudo-
equilibrium with one another, their reactive fluxes are equal to each other. Thus, this output file 
is useful for several purposes, including monitoring the evolution toward equilibrium and 
diagnosing pseudo-equilibrium conditions. 

A.7.4 multiwell.dist 
This file stores time-dependent vibrational distributions within each well. Only the non-

zero array elements are tabulated. Many trials are needed to accumulate good statistics and thus 
the binned results correspond to the number of visits to the bin (which can be many times larger 
than Ntrials) and are averaged over the time-bin. To limit the size of this file, each (default) time 
bin is set at ten times that of the time-bins used for the other time-dependent output. 

A.7.5 multiwell.array 
This file tabulates all energy-dependent input data, including densities of states, specific 

rate constants for every reaction, collision up-transition probabilities and normalization factors, 
and initial energy distributions. 

A.8. Concluding Remarks 
MultiWell calculates time-dependent concentrations, yields, vibrational distributions, and 

rate constants as functions of temperature and pressure for unimolecular reaction systems that 
consist of multiple stable species and multiple reaction channels interconnecting them. Users 
may supply unimolecular reaction rates, sums of states and densities of states, or optionally use 
the Inverse Laplace Transform method. For weak collision effects, users can select different 
collision models for down-steps including exponential, biexponential, generalized exponential, 
etc., and user-defined functions. 

The code is intended to be relatively easy to use. It is designed so that even the most 
complicated unimolecular reaction systems can be handled via the data file without restructuring 
or recompiling the code. 

MultiWell is most suitable for time-dependent non-equilibrium systems. The real time 
needed for a calculation depends mostly upon the number of collisions during a simulated time 
period and on the number of stochastic trials needed to achieve the desired precision. For slow 
reaction rates and precise yields of minor reaction products, the code will require considerable 
computer time, but it will produce results. For long calculation runs, we often just let the 
simulation run overnight or over a weekend.  
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microcanonical transition state theory, 138 
Miller, W. H., 95 
Miller, W. H., 68, 96 
Molele, 15 
Molinit, 19 
MolMom, 15 
MolName, 15 
Molopt, 15 
Molsym, 15 
moment of inertia, 15, 78 
moments of inertia, 38 
MORSE, 46 
Morse oscillator, 28, 43, 46, 78 
Morse oscillator anharmonicity, 28, 43 
Morse Potential, 133 
multinomial distribution, 128 
multiple-well systems, 124 
MultiWell, 6 

Data files, external, 24, 26 
Directory, 3 
Examples, 133, 148 
Input File, 1, 151 
Input file format, 13, 32 
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Makefile, 4 
Output files, 28, 152 
Symmetry Examples, 89 

MultiWell input options, 12 
multiwell.array, 11, 153 
multiwell.dist, 11, 153 
multiwell.flux, 12, 152 
multiwell.out, 11, 152 
multiwell.rate, 11, 152 
multiwell.sum, 11 
NOCENT, 17, 18, 101, 135 
non-RRKM, 136 
non-separable degrees of freedom, 68 
non-separable vibrations, 79 
NOREV, 17 
normalization, 143, 145 
normalization problems, 145 
normalization, finite difference algorithm, 145 
NOTUN, 17 
Np, 14 
NProds, 15 
number of trials, 19 
numerical convergence, 104, 110 
NWells, 15 
oblate symmetric top, 84 
oblate top, 130 
obs, 28, 32, 43, 51 
Observed frequency, 28, 43 
OLDET, 16 
optical isomer, 87 
optical isomers, 15, 17 

Hindered internal rotation, 87 
output files, 11 
Particle in a Box, 29, 44 
particle-in-a-box, 33, 52, 111 
partition function, 68, 141 
perturbation theory expansion, 79 
Photo-Activation, 149 
precision, 129 
pressure units, 14 
Product set, 15 
Product sets, 7, 15 
Program Execution, 10 
prolate symmetric top, 84 
prolate top, 130 
pseudo-diatomic model, 129 
pseudo-first-order, 138 
Punits, 14 
qro, 110 
quantum mechanical tunneling, 99, 137 
quasi-bound states, 81 
quasicontinuum, 116 
Questions and Answers, 110 
radiationless transitions, 23 
random number generator, 128 
random walkers, 112 

rate constant 
canonical, 96 
chemical activation, 108 
microcanonical, 96 
unimolecular, 106, 107 

reaction flux coefficient, 11, 152 
reactive flux, 121, 152 
recombination reaction, 47 
Recombination Reactions, 149 
reduced moment of inertia, 38, 74 
relative translation, 31 
restricted Gorin model, 133 
REV, 17 
RKE, 18 
rot, 110 
Rotation, 29, 33, 43, 52, 114 

quantized, 33, 52 
rotational, 14 
Rotational Constant, 78 
rotational constants, 14 
rotational degrees of freedom, 47, 84 
RRKM theory, 129 
running the programs, 4 
Schrödinger equation, 73 
SCTST, 47, 48, 50, 54, 68, 69, 83, 95, 96, 98, 99 
sctst.out, 68, 69 
selection of step sizes, 146 
semi-classical transition state theory, 47, 48, 68, 95 
Semi-empirical Canonical Variational Transition 

State Theory, 134 
semi-microcanonical bimolecular rate constant, 139 
semi-microcanonical pseudo-first order rate constant, 

140 
separable-rotors approximation, 82, 120 
separation of time scales, 105, 106 
shock-tube simulations, 14 
simulated time, 108 
SLOW, 17, 18 
Slow IVR, 136 
sMORSE, 47 
source code, 9 
specific rate constants, 24, 125 
standard state, 41 
statistical errors, 112 
statistical fluctuations, 112 
steady-state distribution, 107 
step-size distribution, 146 
Stiff Morse Oscillator, 47 
Stochastic Method, 126 
stochastic noise, 112 
stochastic trials, 112 
SUM, 18 
sums and densities of states, 98 
sums of states, 24, 125 
symmetric top, 44, 52, 82 

separable rotors approximation, 82 
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symmetric tops 
almost symmetric, 82, 130 

symmetry 
internal rotation, 85 
potential energy, 85 

symmetry number, 15, 17 
hindered internal rotation, 34, 53 

symmetry numbers, 129 
Symmetry Numbers, external, 85 
symmetry numbers, internal rotors, 85 
Temp, 14 
terminology, 6 
THERMAL, 19 
Thermal Activation, 149 
THERMO, 134 
thermodynamic database, 41 
threshold energy, 129 
tight transition state, 129 
TIME, 19 
time step, 127 
top, 52 
torsion, 115 
torsion rotational constant function, 115 
torsions, 73 
total collision  rate constant, 16 
total collision frequency, 19 
total collision rate constant, 136, 143 
transition state, 50 

loose, 131 
tight, 129 

Transition state parameter entry, 17 
transition state theory, 41, 68, 95 
Transition states, 6, 124 
Translation, 31, 35 
translational states, 142 

translational temperature, 14 
trn, 35 
TUN, 17, 18, 100 
tunneling, 17, 50, 68, 95, 137 
tunneling corrections, 1 
tunneling probability, 137 
Tvib, 14 
Uncertainties, 128 
Unimolecular Reactions, 129 
unsymmetrical hindered internal rotation, 30, 45 
utilities, 55 
utilities for creating data files, 55 
Variational Transition State Theory, 131 
VariFlex software, 112 
VARSHNI, 46 
Varshni Oscillator, 46 
Viblo, 24 
vibration, 33, 52 
vibrational 

anharmonicity, 78 
vibrational anharmonicity, 47, 54, 95 
vibrational energy, 78 

perturbation theory expansion, 79 
vibrational perturbation theory, 99 
vibrational temperature, 14 
vibrations 

non-separable, 79 
separable, 78 

vimag(Mol,i), 18 
VPT2, 99 
Wang-Landau algorithm, 68 
Wells, 6, 15, 124 
Whitten-Rabinovitch approximation, 28 
Xij anharmonicity coefficient matrix, 78 

 
 
 
 


